1 | CUI L F, XIANG D, WANG Y G, et al. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light[J]. Applied Surface Science, 2017, 391: 202-210. | 2 | PRASAD C, TANG H, BAHADUR I. Graphitic carbon nitride based ternary nanocomposites: from synthesis to their applications in photocatalysis: a recent review[J]. Journal of Molecular Liquids, 2019, 281: 634-654. | 3 | DONG F, ZHAO Z, XIONG T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis[J]. Applied Materials & Interfaces, 2013, 5(21): 11392-11401. | 4 | WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4s-based photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123. | 5 | ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. | 6 | 范乾靖, 刘建军, 于迎春, 等. 新型非金属光催化剂——石墨型氮化碳的研究进展[J]. 化工进展, 2014, 33(5): 1185-1194. | 6 | FAN Q J, LIU J J, YU Y C, et al. Research progress in a new metal-free photocatalyst-graphitic carbon nitride[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1185-1194. | 7 | 郭雅容, 陈志鸿, 刘琼, 等.石墨相氮化碳光催化剂研究进展[J]. 化工进展, 2016, 35(7): 2063-2070. | 7 | GUO Y R, CHEN Z H, LIU Q, et al. Research progress of graphitic carbon nitride in photocatalysis[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2063-2070. | 8 | SUN L L, LIU C Y, LI J Z, et al. Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets[J]. Chinese Journal of Catalysis, 2019, 40(1): 80-94. | 9 | GAO D, XU Q, ZHANG J, et al. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets[J]. Nanoscale, 2014, 6(5): 2577-2581. | 10 | LIANG Q H, LI Z, HUANG Z H, et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials, 2015, 25(44): 6885-6892. | 11 | DONG G H, AI Z H, ZHANG L Z. Efficient anoxic pollutant removal with oxygen functionalized graphitic carbon nitride under visible light[J]. RSC Advances, 2014, 4(11): 5553-5560. | 12 | LAU W H, YU W Z, EHRAT F, et al. Urea-modified carbon nitrides: enhancing photocatalytic hydrogen evolution by rational defect engineering[J]. Advanced Energy Materials, 2017, 7(12): 1602251. | 13 | MENG N N, REN J, LIU Y, et al. Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production[J]. Energy & Environmental Science, 2018, 11(3): 566-571. | 14 | SANTACLARA J G, NASALEVICH M A, CATELLANONS S, et al. Organic linker defines the excited-state decay of photocatalytic MIL-125(Ti)-type materials[J]. ChemSusChem, 2016, 9(4): 388-395. | 15 | MATTHEN B C, WANG X, LAURA E, et al. Maximizing the photocatalytic activity of meta-organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2[J]. Journal of the American Chemical Society, 2017, 139(24): 8222-8228. | 16 | ZHANG Z Y, HUANG J D, ZHANG M Y, et al. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 163: 298-305. | 17 | NEAM U M, FRIMMEL F H. Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation[J]. Science of the Total Environment, 2006, 369(1/2/3): 295-306. | 18 | INUMARU K, KASAHARA T, YAMANAKA S. Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO2: a combination of molecular selective adsorption and photocatalysis[J]. Applied Catalysis B: Environmental, 2004, 52(4): 275-280. | 19 | LI H T, LI N, WANG M, et al. Synthesis of novel and stable g-C3N4-Bi2WO6 hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation[J]. Royal Society Open Science, 2018, 5(3): 171419. | 20 | WANG X W, ZHANG S H, GAO H S, et al. Ultrathin g-C3N4 nanosheets coupled with amorphous Cu doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation[J]. Environmental Science: Nano, 2018, 5: 1179-1190. | 21 | WU S Z, CHEN C H, ZHANG W D. Etching graphitic carbon nitride by acid for enhanced photocatalytic activity toward degradation of 4-nitrophenol[J]. Chinese Chemical Letters, 2014, 25(9): 1247-1251. | 22 | OU H, LIN L, ZHENG Y, et al. Tri‐s‐triazine‐based crystalline carbon nitride nanosheets for an improved hydrogen evolution[J]. Advanced Materials, 2017, 29(22): 1700008. | 23 | WAN Y L, YANG M, RONG J F, et al. Hybrid 0D-2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution[J]. Nano Energy, 2018, 50: 552-561. | 24 | ZHENG Y, JIAO Y, ZHU Y H, et al. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions[J]. Journal of the American Chemical Society, 2017, 139(9): 3336. | 25 | ZHAO C C, YAN Q Y, WANG S J, et al. Regenerable g-C3N4-chitosan beads with enhanced photocatalytic activity and stability[J]. RSC Advances, 2018, 8(48): 27516-27524. | 26 | MASIH D, MA Y Y, ROHANI S. Graphitic C3N4 based noble-metal-free photocatalyst systems: a review[J]. Applied Catalysis B:Environmental, 2017, 206: 556-588. | 27 | SOHEILA A K, AZIZ H Y, KUNIO Y. Novel g-C3N4 nanosheets/CDs/BiOCl photocatalysts with exceptional activity under visible light[J]. Journal of the American Ceramic Society, 2018, 102(3): 1435-1453. | 28 | LIU X, ZHANG J, DONG Y M, et al. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14): 202-210. | 29 | LI Y F, JIN R X, YAN X, et al. Macroscopic foam‐like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible‐light photocatalytic activity[J]. Advanced Energy Materials, 2016, 6(24): 1601273. | 30 | 梁庆华. 石墨相氮化碳的结构调控及增强光催化性能研究[D]. 北京: 清华大学, 2016. LIANG Q H. Structural tuning of graphitic carbon nitrides with highly improved photocatalytic performance[D]. Beijing: Tsinghua University, 2016. | 31 | TENG Z Y, YANG N L, Lü H Y, et al. Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water[J]. Chem., 2019, 5(3): 664-680. | 32 | ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 51-69. | 33 | QIU J H, YI F, ZHANG X F, et al. Facile stir-dried preparation of g-C3N4/TiO2 homogeneous composites with enhanced photocatalytic activity[J]. RSC Advances, 2017, 7(18): 10668-10674. | 34 | VU M H, SAKAR M, NGUYEN C C, et al. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4194-4203. | 35 | 陈鹏, 董帆, 冉茂希, 等. MnOx/g-C3N4光热协同催化净化NO的性能增强和反应机理[J]. 催化学报, 2018, 39(4): 619-629. | 35 | CHEN P, DONG F, RAN M X,et al. Synergistic photo-thermal catalytic NO purification of MnOx/g-C3N4: enhanced performance and reaction mechanism[J] Chinese Journal of Catalysis, 2018, 39(4): 619-629. | 36 | TIAN N, ZHANG Y H, LI X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution[J]. Nano Energy, 2017, 38(5): 72-81. | 37 | 陈峰, 杨慧, 王雪飞, 等. NiS2助剂修饰g-C3N4光催化剂的简易合成及光催化制氢性能增强研究[J]. 催化学报, 2017, 38(2): 296-304. | 37 | CHEN F, YANG H, WANG X F, et al. Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts[J]. Chinese Journal of Catalysis, 2017, 38(2): 296-304. | 38 | KIM J Y, KIM D Y, LEE W S, et al. Impact of total organic carbon and specific surface area on the adsorption capacity in Horn River shale[J]. Journal of Petroleum Science & Engineering, 2017, 149: 331-339. | 39 | 曹丽丽, 蒋善庆, 凌泽玉, 等.水热合成Ag+掺杂SrTiO3可见光催化降解四环素性能和机制[J]. 化工进展, 2018, 37(11): 4500-4508. | 39 | CAO L L, JIANG S Q, LING Z Y, et al. Properties and mechanisms of tetracycline photocatalytic degradation by hydrothermal synthesis Ag-SrTiO3 in visible-light[J] Chemical Industry and Engineering Progress, 2018, 37(11): 4500-4508. |
|