化工进展 ›› 2020, Vol. 39 ›› Issue (4): 1528-1538.DOI: 10.16085/j.issn.1000-6613.2019-1208
收稿日期:
2019-07-29
出版日期:
2020-04-05
发布日期:
2020-04-28
通讯作者:
段文焱
作者简介:
张若瑄(1994—),女,硕士研究生,研究方向为土壤有机质中持久性自由基的稳定机制。E-mail:基金资助:
Ruoxuan ZHANG1(),Peng WANG2,Xuchao ZHANG1,Wenyan DUAN1()
Received:
2019-07-29
Online:
2020-04-05
Published:
2020-04-28
Contact:
Wenyan DUAN
摘要:
环境持久性自由基(EPFRs)是一类具有环境风险的新型污染物,因其广泛分布于环境中且具有潜在环境毒性效应而受到关注。虽然研究者们已发现天然土壤与受有机污染物污染的土壤(如多环芳烃、五氯苯酚等)中均存在非常稳定的EPFRs,但对于这两种环境条件下EPFRs的生成、稳定、影响因素的相关结论仍然存在争论。本文综述了天然土壤组分(腐殖质、有机-无机复合体)中EPFRs的分布特征、形成机理与影响因素,并论述有机污染物降解过程中EPFRs的生成、稳定机制及迁移转化,总结出不同因素(土壤有机质、过渡金属、氧气、湿度、温度)对EPFRs的影响。本文加深了对土壤中EPFRs环境行为的认识,并对腐殖质中EPFRs的研究进行了展望,对土壤环境中EPFRs的进一步研究提供参考。
中图分类号:
张若瑄,王朋,张绪超,段文焱. 土壤中环境持久性自由基的形成与稳定及其影响因素[J]. 化工进展, 2020, 39(4): 1528-1538.
Ruoxuan ZHANG,Peng WANG,Xuchao ZHANG,Wenyan DUAN. Formation, stability and influencing factors of environmentally persistent free radicals in soil: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1528-1538.
1 | GOMBERG M. An instance of trivalent carbon: triphenylmethyl[J]. Journal of the American Chemical Society, 1900, 22(11): 757-771. |
2 | 韩林, 陈宝梁. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9): 1008-1020. |
HAN L, CHEN B L. Generation mechanism and fate behaviors of environmental persistent free radicals[J]. Progress in Chemistry, 2017, 29(9): 1008-1020. | |
3 | DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proc. Combust. Inst., 2007, 31(1): 521-528. |
4 | DUGAS T R, LOMNICKI S, CORMIER S A, et al. Addressing emerging risks: scientific and regulatory challenges associated with environmentally persistent free radicals[J]. International Journal of Environmental Research & Public Health, 2016, 13(6): 573. |
5 | 张绪超, 赵力, 陈懿, 等. 环境持久性自由基及其介导的生物学损伤[J]. 中国环境科学, 2019, 39(5): 2180-2189. |
ZHANG X C, ZHAO L, CHEN Y, et al. Overlooked risks and influences of environmentally persistent free radicals in the ambient media[J]. China Environmental Science, 2019, 39(5): 2180-2189. | |
6 | GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 2013, 47(15): 8172-8178. |
7 | WILLIAM G, LAVRENT K, BARRY D. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environmental Science & Technology, 2014, 48(8): 4266. |
8 | 阮秀秀, 孙万雪, 程玲, 等. 环境持久性自由基的研究进展[J]. 上海大学学报(自然科学版), 2016, 22(2): 114-121. |
RUAN X X, SUN W X, CHENG L, et al. Research progress of environmental persistent free radicals[J]. Journal of Shanghai University (Natural Science Edition), 2016, 22(2): 114-121. | |
9 | DELA CRUZ A L, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site[J]. Environ. Sci. Technol., 2011, 45(15): 6356-6365. |
10 | DELA CRUZ A L, COOK R L, LOMNICKI S M, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environ. Sci. Technol., 2012, 46(11): 5971-5978. |
11 | DELA CRUZ A L, COOK R L, DELLINGER B, et al. Assessment of environmentally persistent free radicals in soils and sediments from three superfund sites[J]. Environ. Sci. Process Impacts, 2014, 16(1): 44-52. |
12 | REX R W. Electron paramagnetic resonance studies of stable free radicals in lignins and humic acids[J]. Nature, 1960, 188(4757): 1185-1186. |
13 | MICHAEL A, MICHAEL S, SCHWARZENBACH R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1): 87-93. |
14 | PATIL S V, ARGYROPOULOS D S. Stable organic radicals in lignin: a review[J]. ChemSusChem, 2017, 10(17): 3284-3303. |
15 | RIFFALDI R, SCHNITZER M. Electron spin resonance spectrometry of humic substances[J]. Soil Science Society of America Journal, 1972, 36(2): 301-305. |
16 | SAAB S C, MARTIN-NETO L. Studies of semiquinone free radicals by ESR in the whole soil, HA, FA and humin substances[J]. Journal of the Brazilian Chemical Society, 2004, 15: 34-37. |
17 | JIA H Z, ZHAO S, NULAJI G, et al. Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization[J]. Environ. Sci. Technol., 2017, 51(11): 6000-6008. |
18 | JIA H Z, ZHAO S, SHI Y F, et al. Formation of environmentally persistent free radicals during the transformation of anthracene in different soils: roles of soil characteristics and ambient conditions[J]. J. Hazard Mater., 2019, 362: 214-223. |
19 | FELD-COOK E E, BOVENKAMP-LANGLOIS L, LOMNICKI S M. Effect of particulate matter mineral composition on environmentally persistent fee radical (EPFR) formation[J]. Environ. Sci. Technol., 2017, 51(18): 10396-10402. |
20 | TIAN L, KOSHLAND C P, YANO J, et al. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion[J]. Energy & Fuels, 2009, 23(5): 2523-2526. |
21 | 赵力, 陈建, 李浩, 等. 裂解温度和酸处理对生物炭中持久性自由基产生的影响[J]. 环境化学, 2017(11): 2472-2478. |
ZHAO L, CHENG J, LI H, et al. Effect of pyrolysis temperature and acid treatment on the generation of free radicals in biochars[J]. Environmental Chemistry, 2017(11): 2472-2478. | |
22 | LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings[J]. Environ. Sci. Technol., 2014, 48(15): 8581-8587. |
23 | YANG J, PAN B, LI H, et al. Degradation of p-nitrophenol on biochars: role of persistent free radicals[J]. Environmental Science & Technology, 2015, 50(2): 694-700. |
24 | LIU Y, DAI Q Y, JIN X Q, et al. Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?[J]. Environmental Science & Technology, 2018, 52(21): 12740-12747. |
25 | THEA W, ZHU Z H, JOHANNES L. Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon[J]. Environmental Science & Technology, 2014, 48(23): 13727-13734. |
26 | YANG L L, LIU G R, ZHENG M H, et al. Pivotal roles of metal oxides in the formation of environmentally persistent free radicals[J]. Environmental Science & Technology, 2017, 51(21): acs. est. 7b03583. |
27 | LI H, PAN B, LIAO S H, et al. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation[J]. Environmental Pollution, 2014, 188: 153-158. |
28 |
LI H, GUO H Y, PAN B. Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals[J]. Scientific Reports, 2016. DOI: 10.1038/srep24494.
DOI |
29 | VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals: insights on a new class of pollutants[J]. Environ. Sci. Technol., 2018, 52(5): 2468-2481. |
30 | 王朋, 吴敏, 李浩, 等. 环境持久性自由基对有机污染物环境行为的影响研究进展[J]. 化工进展, 2017, 36(11): 4243-4249. |
WANG P, WU M, LI H, et al. Formation of environmental persistent free radicals and its influence on organic pollutant behavior: a review[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4243-4249. | |
31 | STEELINK C, TOLLIN G. Stable free radicals in soil humic acid[J]. Biochimica Et Biophysica Acta, 1962, 59(1): 25-34. |
32 | WILSON S A, WEBER J H. Electron spin resonance analysis of semiquinone free radicals of aquatic and soil fulvic and humic acids[J]. Analytical Letters, 1977, 10(1): 75-84. |
33 | STEELINK C. Free radical studies of lignin, lignin degradation products and soil humic acids[J]. Geochimica Et Cosmochimica Acta, 1964, 28(10): 1615-1622. |
34 | WATANABE A, MCPHAIL D B, MAIE N, et al. Electron spin resonance characteristics of humic acids from a wide range of soil types[J]. Organic Geochemistry, 2005, 36(7): 981-990. |
35 | CHRISTOFORIDIS K C, SUN U, YIANNIS D. High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids[J]. Journal of Physical Chemistry A, 2007, 111(46): 11860-11866. |
36 | GONZÁLEZ PEREZ M, MARTIN-NETO L, SAAB S C, et al. Characterization of humic acids from a Brazilian oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy[J]. Geoderma, 2004, 118(3/4): 181-190. |
37 | CHESHIRE M V, MCPHAIL D B. Hyperfine splitting in the electron spin resonance solution spectra of humic substances[J]. European Journal of Soil Science, 1996, 47(2): 205-213. |
38 | SENESI N. Application of electron spin resonance and fluorescence spectroscopies to the study of soil humic substances[J]. Developments in Agricultural and Managed Forest Ecology, 1992, 25: 11-26. |
39 | SENESI N. Application of electron spin resonance (ESR) spectroscopy in soil chemistry[J]. Adv. Soil. Sci., 1990, 14: 77-130. |
40 | LOVLEY D R, COATES J D, BLUNT-HARRIS E L. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. |
41 | SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989. |
42 | STERN N, MEJIA J, HE S M, et al. Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction[J]. Environ. Sci. Technol., 2018, 52(10): 5691-5699. |
43 | MATSUNAGA Y, MCDOWELL C A. The electron spin resonance absorption spectra of semiquinone ions: Part Ⅱ. The hyperfine splitting due to amino groups[J]. Canadian Journal of Chemistry, 1960, 38(7): 1158-1166. |
44 | MILORI D M B P, MARTIN-NETO L, BAYER C, et al. Humification degree of soil humic acids determined by fluorescence spectroscopy[J]. Soil Science, 2002, 167(11): 739-749. |
45 | POLAK J, SULKOWSKI W W, BARTOSZEK M, et al. Spectroscopic studies of the progress of humification processes in humic acid extracted from sewage sludge[J]. Journal of Molecular Structure, 2005, 744: 983-989. |
46 | BAYER C, MARTIN-NETO L, MIELNICZUK J, et al. Tillage and cropping system effects on soil humic acid characteristics as determined by electron spin resonance and fluorescence spectroscopies[J]. Geoderma, 2002, 105(1): 81-92. |
47 | SCHNITZER M, LÉVESQUE M. Electron spin resonance as a guide to the degree of humification of peats[J]. Soil Science, 1979, 127(3): 140-145. |
48 | MARTIN-NETO L, ROSELL R, SPOSITO G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence[J]. Geoderma, 1998, 81(3/4): 305-311. |
49 | THOMSEN I K, SCHJØNNING P, JENSENA B, et al. Turnover of organic matter in differently textured soils[J]. Geoderma, 1999, 89(3/4): 177-198. |
50 | CHRISTENSEN B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 2010, 52(3): 345-353. |
51 | LI F, CHANG Z, KHAING K, et al. Organic matter protection by kaolinite over bio-decomposition as suggested by lignin and solvent-extractable lipid molecular markers[J]. The Science of the Total Environment, 2019, 647: 570-576. |
52 | RANDALL E W, MAHIEU N, POWLSON D S, et al. Fertilization effects on organic matter in physically fractionated soils as studied by 13C NMR: Results from two long-term field experiments[J]. European Journal of Soil Science, 1995, 46(4): 557-565. |
53 | GUGGENBERGER G, ZECH W, HAUMAIER L, et al. Land-use effects on the composition of organic matter in particle-size separates of soils: Ⅱ. CPMAS and solution 13C NMR analysis[J]. European Journal of Soil Science, 1995, 46(1): 147-158. |
54 | JIA H, NULAJI G, GAO H W, et al. Formation and stabilization of environmentally persistent free radicals induced by the interaction of anthracene with Fe(Ⅲ)-modified clays[J]. Environ. Sci. Technol., 2016, 50(12): 6310-6319. |
55 | 王婷, 李浩, 郭惠莹, 等. 邻苯二酚-Fe2O3和邻苯二酚-CuO体系中持久性自由基的形成机制及特征[J]. 环境化学, 2016, 35(3): 6-12. |
WANG T, LI H, GUO H Y, et al. The formation and characteristics of persistent free radicals in catechol-Fe2O3/silica and catechol-CuO/silica systems[J]. Environmental Chemistry, 2016, 35(3): 6-12. | |
56 | SONG Y, BUETTNER G R, PARKIN S, et al. Chlorination increases the persistence of semiquinone free radicals derived from polychlorinated biphenyl hydroquinones and quinones[J]. J. Org. Chem., 2008, 73(21): 8296-8304. |
57 | JIA H Z, ZHAO J C, LI L, et al. Transformation of polycyclic aromatic hydrocarbons (PAHs) on Fe(Ⅲ)-modified clay minerals: role of molecular chemistry and clay surface properties[J]. Applied Catalysis B: Environmental, 2014, 154/155: 238-245. |
58 | JIA H Z, LI L, FAN X Y, et al. Visible light photodegradation of phenanthrene catalyzed by Fe(Ⅲ)-smectite: role of soil organic matter[J]. Journal of Hazardous Materials, 2013, 256/257(7): 16-23. |
59 | BORROWMAN C K, ZHOU S M, BURROW T E, et al. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds[J]. Physical Chemistry Chemical Physics, 2015, 18(1): 205-212. |
60 | WANG P, PAN B, LI H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China[J]. Environmental Science & Technology, 2018, 52(3): acs. est. 7b05453. |
61 | EASTMAN M P, PATTERSON D E, PANNELL K H. Reaction of benzene with Cu(Ⅱ)- and Fe(Ⅲ)-exchanged hectorites[J]. Clays & Clay Minerals, 1984, 32(4): 327-333. |
62 | BOYD S A, MORTLAND M M. Dioxin radical formation and polymerization on Cu(Ⅱ)-smectite[J]. Nature, 1985, 316(6028): 532-535. |
63 | SI Y B, WANG S Q, ZHOU D M, et al. Adsorption and photo-reactivity of bensulfuron-methyl on homoionic clays[J]. Clays & Clay Minerals, 2004, 52(6): 742-748. |
64 | HE Y, XU J M, WANG H Z, et al. Potential contributions of clay minerals and organic matter to pentachlorophenol retention in soils[J]. Chemosphere, 2006, 65(3): 497-505. |
65 | NWOSU U G, KHACHATRYAN L, YOUM S G, et al. Model system study of environmentally persistent free radicals formation in a semiconducting polymer modified copper clay system at ambient temperature[J]. RSC Advances, 2016, 6(49): 43453-43462. |
66 | KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment[J]. FEMS Microbiology Ecology, 2004, 47(1): 85-92. |
67 | KOELMANS A A, JONKER M T O, CORNELISSEN G, et al. Black carbon: the reverse of its dark side[J]. Chemosphere, 2006, 63(3): 365-377. |
68 | YANG Y, TAO S, ZHANG N, et al. The effect of soil organic matter on fate of polycyclic aromatic hydrocarbons in soil: a microcosm study[J]. Environmental Pollution, 2010, 158(5): 1768-1774. |
69 | LIU G F J G C. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation[J]. Environ. Sci. Technol., 2014, 48(3): 1902-1910. |
70 | FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. |
71 | FANG G D, ZHU C Y, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation[J]. Bioresource Technology, 2015, 176: 210-217. |
72 | RUAN X X, LIU Y Y, WANG G Q, et al. Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin[J]. Bioresource Technology, 2018, 270: 223-229. |
73 | PATTERSON M C, KEILBART N D, KIRURI L W, et al. EPFR formation from phenol adsorption on Al2O3 and TiO2: EPR and EELS studies[J]. Chemical Physics, 2013, 422(8): 277-282. |
74 | VEJERANO E, LOMNICKI S, DELLINGER B. Lifetime of combustion-generated environmentally persistent free radicals on Zn(Ⅱ)O and other transition metal oxides[J]. Journal of Environmental Monitoring Jem, 2012, 14(10): 2803-2806. |
75 | VEJERANO E, LOMNICKI S M, DELLINGER B. Formation and stabilization of combustion-generated, environmentally persistent radicals on Ni(Ⅱ)O supported on a silica surface[J]. Environ. Sci. Technol., 2012, 46(17): 9406-9411. |
76 | SOMA Y, SOMA M. Chemical reactions of organic compounds on clay surfaces[J]. Environmental Health Perspectives, 1989, 83(83): 205-214. |
77 | PAN B, LI H, LANG D, et al. Environmentally persistent free radicals: occurrence, formation mechanisms and implications[J]. Environmental Pollution, 2019, 248: 320-331. |
78 | BOYD S A, SHENG G, TEPPEN B J, et al. Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays[J]. Environmental Science & Technology, 2001, 35(21): 4227-4234. |
79 | JOHNSTON C T, SHENG G, TEPPEN B J, et al. Spectroscopic study of dinitrophenol herbicide sorption on smectite[J]. Environmental Science & Technology, 2002, 36(23): 5067-5074. |
80 | JIA H Z, LI L, CHEN H X, et al. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light[J]. Journal of Hazardous Materials, 2015, 287: 16-23. |
81 | VEJERANO E, LOMNICKI S, DELLINGER B. Formation and stabilization of combustion-generated environmentally persistent free radicals on an Fe(Ⅲ)2O3/silica surface[J]. Environmental Science & Technology, 2011, 45(2): 589-594. |
82 | LEHNER A F, HORN J, FLESHER J W. Formation of radical cations in a model for the metabolism of aromatic hydrocarbons[J]. Biochem. Biophys. Res. Commun., 2004, 322(3): 1018-1023. |
83 | NWOSU U G, ROY A, DELA CRUZ A L N, et al. Formation of environmentally persistent free radical (EPFR) in iron(Ⅲ) cation-exchanged smectite clay[J]. Environmental Science Processes & Impacts, 2016, 18(1): 42-50. |
84 | RUPERT J P. Electron spin resonance spectra of interlamellar copper(Ⅱ)-arene complexes on montmorillonite[J]. J. Phys. Chem., 1973, 77(6): 784-790. |
85 | TAMAMURA S, TAMAMURA T, OTA Y, et al. Decomposition of polycyclic aromatic hydrocarbon (PAHs) on mineral surface under controlled relative humidity[J]. Acta Geologica Sinica, 2006, 80(2): 185-191. |
86 | CHENG G, CUN L, HUI L, et al. Clay mediated route to natural formation of polychlorodibenzo-p-dioxins[J]. Environmental Science & Technology, 2011, 45(8): 3445-3451. |
87 | ZHU D Q, HERBERT B E, SCHLAUTMAN M A, et al. Cation-π bonding: a new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces[J]. Journal of Environmental Quality, 2004, 33(4): 1322-1330. |
88 | HADERLEIN S B, SCHWARZENBACH R P. Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces[J]. Environmental Science & Technology, 1993, 27(2): 316-326. |
89 | HADERLEIN S B, WEISSMAHR K W, SCHWARZENBACH R P. Specific adsorption of nitroaromatic explosives and pesticides to clay minerals[J]. Environmental Science & Technology, 1996, 30(2): 612-622. |
90 | CZECHOWSKI F, JEZIERSKI A. EPR studies on petrographic constituents of bituminous coals, chars of brown coals group components, and humic acids 600℃ char upon oxygen and solvent action[J]. Energy & Fuels, 1997, 11(5): 951-964. |
91 | JIA H Z, ZHAO S, SHI Y F, et al. Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(Ⅲ)-montmorillonite surface[J]. J. Hazard Mater., 2019, 362: 92-98. |
92 | JIA H, ZHAO S, SHI Y F, et al. Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal Ions and polycyclic aromatic hydrocarbon molecular properties[J]. Environ. Sci. Technol., 2018, 52(10): 5725-5733. |
[1] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[2] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[3] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[4] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[5] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[6] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[7] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[8] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[9] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[10] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[11] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[12] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[13] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[14] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
[15] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |