1 |
吴剑华. 卧式连续交错流液液分离装置及其操作方法: CN200910012605.1[P]. 2009-12-30.
|
|
WU J H. Horizontal continuous staggered flow liquid separation device and its operation method: CN200910012605.1[P]. 2009-12-30.
|
2 |
陆耀军, 潘玉琦, 薛敦松. 重力式油水分离设备入口构件的模拟实验优选[J]. 石油学报, 1995, 16(3): 111-115.
|
|
LU Y J, PAN Y Q, XUE D S. The simulated tests and optimized study on inlet component of gravity oil/water separator[J]. Acta Petrolei Sinica, 1995, 16(3): 111-115.
|
3 |
李振林, 董守平, 张建. 重力式油气水三相分离器内部流动研究[J]. 石油机械, 1999, 27(7): 10-12.
|
|
LI Z L, DONG S P, ZHANG J. Internal flow field in gravity oil-gas-water separator[J]. China Petroleum Machinery, 1999, 27(7): 10-12.
|
4 |
吕宇玲, 何利民, 王国栋, 等. 含不同构件的重力式分离器内流场数值模拟[J]. 石油机械, 2008, 36(2): 12-16.
|
|
LÜ Y L, HE L M, WANG G D, et al. Numerical simulation of the flow field in gravity separator with different components[J]. China Petroleum Machinery, 2008, 36(2): 12-16.
|
5 |
鞠微. 卧式沉降三相分离器设计及数值研究[D]. 大连: 大连理工大学, 2014.JU W. Horizontal setting three-phase separator design and numerical study[D]. Dalian: Dalian University of Technology, 2014.
|
6 |
江朝阳, 乔胜超, 王日杰, 等. CFD及响应面分析法优化设计重力式油水分离器入口构件[J]. 化学工业与工程, 2016, 33(5): 79-85.
|
|
JIANG C Y, QIAO S C, WANG R J, et al. Optimal design of inlet component of gravity oil/water separator by CFD and response surface method[J]. Chemical Industry and Engineering, 2016, 33(5): 79-85.
|
7 |
王振波, 葛卫学, 孙治谦, 等. 卧式重力沉降器油水空间分布研究[J]. 高校化学工程学报, 2012, 26(1): 37-42.
|
|
WANG Z B, GE W X, SUN Z Q, et al. Study on spatial distribution of oil and water in horizontal gravity separator[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(1): 37-42.
|
8 |
邓志安, 孙洁, 商羽婷. 含不同入口构件的重力式分离器内流场的数值模拟[J]. 石油工业技术监督, 2010, 26(3): 9-11
|
|
DENG Z A, SUN J, SHANG Y T. Numerical simulation of the flow field in a gravity separator with different inlet components[J]. Technology Supervision in Petroleum Industry, 2010, 26(3): 9-11.
|
9 |
PANDA S K, BUWA V V. Effects of geometry and internals of a continuous gravity settler on liquid-liquid separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(46): 13929-13944.
|
10 |
王学平, 文学, 龚斌, 等. 分离器入口处不同形状挡板对内部流场影响的比较分析[J]. 沈阳化工大学学报, 2018, 32(3): 250-258.
|
|
WANG X P, WEN X, GONG B, et al. Influence of different baffles on the internal flow field at the inlet of separator[J]. Journal of Shenyang University of Chemical Technology, 2018, 32(3): 250-258.
|
11 |
张静, 刘晓亮, 龚斌, 等. 挡板的相对曲率对分离器入口局域流场流体力学性能的影响[J]. 化工进展, 2017, 36(11): 3963-3970.
|
|
ZHANG J, LIU X L, GONG B, et al. Effect of inlet baffle curvature ratio on the local flow fields in the separator[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 3963-3970.
|
12 |
YE S S, TANG Q, WANG Y D, et al. PIV measurement and CFD simulation of liquid-liquid flow of a settler in rare earth solvent extraction mixer-settler[J]. International Journal of Heat and Fluid Flow, 2016, 62: 568-576.
|
13 |
ASGHARZADEH H, FIROOZABADI B, AFSHIN H. Experimental investigation of effects of baffle configurations on the performance of a secondary sedimentation tank[J]. Scientia Iranica, 2011, 18(4): 938-949.
|
14 |
TAMAYOL A, FIROOZABADI B, AFSHIN M A. Hydrodynamics of secondary settling tanks and increasing their performance using baffles[J]. Journal of Environmental Engineering, 2010, 136(1): 32-39.
|
15 |
TAMAYOL A, FIROOZABADI B, AHMADI G. Effects of inlet position and baffle configuration on hydraulic performance of primary settling tanks[J]. Journal of Hydraulic Engineering, 2008, 134(7): 1004-1009.
|
16 |
HUSSEIN H A, ABDULLAH R, MOHAMMED A, et al. Experimental investigation of the effect of inlet baffle position on the flow pattern, oil concentration, and efficiency of rectangular separator tank[J]. Desalination and Water Treatment, 2016, 57(1): 24333-24340.
|
17 |
张李. 重力式油水分离器中的流体力学研究[D]. 天津: 天津大学, 2005.
|
|
ZHANG L. Research on the hydrodynamics of a primary oil/water separator[D]. Tianjin: Tianjin University, 2005.
|
18 |
原广庆, 张吕鸿, 张海涛, 等. 重力式油水分离器内部构件对流动特性的影响[J]. 石油化工设备, 2008, 37(1): 12-15.
|
|
YUAN G Q, ZHANG L H, ZHANG H T, et al. Study on flow field in gravitational oil-water separators with regulating components[J]. Petro Chemical Equipment, 2008, 37(1): 12-15.
|
19 |
LIU B C, MA J, HUANG S H, et al. Two-dimensional numerical simulation of primary settling tanks by hybrid finite analytic method[J]. Journal of Environmental Engineering, 2008, 134(4): 273-282.
|
20 |
HIRT C W, NICHOLS B D. Volume of fluid(VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
|
21 |
陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2002.TAO W Q. Numerical heat transfer[M]. Xi’an: Xi’an Jiaotong University Press, 2002.
|
22 |
SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238.
|
23 |
ARIFF M, SALIM S M, CHEAH S C. Wall y+ approach for dealing with turbulence flow over a surface mounted cube: part 2-High Reynolds number[C]//In Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 2009.
|
24 |
胡坤. ANSYS ICEM CFD工程实例详解[M]. 北京: 人民邮电出版社, 2014.HU K. ANSYS ICEM CFD: engineering example details[M]. Beijing: Post & Telecom Press, 2014.
|
25 |
JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.
|
26 |
HALLER G. An objective definition of a vortex[J]. Journal of Fluid Mechanics, 2005, 525: 1-26.
|
27 |
KHABBOUCHI I, GUELLOUZ M S, et al. A study of the effect of the jet-like flow on the near wake behind a circular cylinder close to a plane wall[J]. Experimental Thermal and Fluid Science, 2013, 44: 285-300.
|
28 |
陶红歌, 陈焕新, 谢军龙, 等. 基于面积加权平均速度和质量加权平均速度的流体流动均匀性指标探讨[J]. 化工学报, 2010, 61(s2): 116-120.
|
|
TAO H G, CHEN H X, XIE J L, et al. Flow uniformity index based on area-weighted and mass-weighted average velocity[J]. CIESC Journal, 2010, 61(s2): 116-120.
|
29 |
战洪仁. 工程传热学基础[M]. 北京: 中国石化出版社, 2014.ZHAN H R. Fundamentals of engineering heat transfer[M]. Beijing: China Petrochemical Press, 2014.
|