化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5410-5419.DOI: 10.16085/j.issn.1000-6613.2019-0537
收稿日期:
2019-04-08
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
石尔
作者简介:
臧徐忠(1993—),女,硕士研究生,研究方向为多场耦合传热传质理论。E-mail:基金资助:
Xuzhong ZANG1,2(),Er SHI1,2(),Junping FU1,2,Tao YU1,2
Received:
2019-04-08
Online:
2019-12-05
Published:
2019-12-05
Contact:
Er SHI
摘要:
磁性纳米流体在实现能量高效和可控传递领域极具发展潜力。本文综述了磁场作用下磁性纳米流体对流换热及沸腾换热的最新进展,主要包括强制对流换热、混合对流换热、自然对流换热、池沸腾换热及管内沸腾换热等方面的实验研究,分析了磁场类型、强度、梯度、频率、方向及磁铁位置等对磁性纳米流体流动和热传输特性的影响,指出可通过改变外加磁场来实现对磁性纳米流体流动和传热的控制,并探讨了磁性纳米流体流-磁耦合作用下的传热机理以及目前所面临的挑战。在此基础上,提出了未来磁场调控磁性纳米流体对流换热和沸腾换热的主要发展方向:制备稳定的磁性纳米流体,建立系统有效的流动和传热理论模型,并从微介观尺度诠释热-流-磁耦合协同换热机理。
中图分类号:
臧徐忠,石尔,傅俊萍,余涛. 磁场调控磁性纳米流体流动和传热研究进展[J]. 化工进展, 2019, 38(12): 5410-5419.
Xuzhong ZANG,Er SHI,Junping FU,Tao YU. A review of magnetic field effects on flow and heat transfer in magnetic nanofluids[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5410-5419.
1 | 周陆军. 磁流体流动及能量传递特性的多尺度研究[D]. 南京: 南京理工大学, 2010. |
ZHOU L J. Investigation of flow and heat transfer of magnetic fluid by multiscale method[D]. Nanjing: Nanjing University of Science & Techonlogy, 2010. | |
2 | 宣益民. 纳米流体能量传递理论与应用[J]. 中国科学: 技术科学, 2014, 44(3): 269-279. |
XUAN Y M. An overview on nanofluids and applications[J]. Science China: Technological Sciences, 2014, 44(3): 269-279. | |
3 | GHOFRANI A, DIBAEI M H, SIMA A H, et al. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field[J]. Experimental Thermal & Fluid Science, 2013, 49: 193-200. |
4 | GOHARKHAH M, SALARIAN A, ASHJAEE M, et al. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field[J]. Powder Technology, 2015, 274: 258-267. |
5 | LAJVARDI M, MOGHIMI-RAD J, HADI I, et al. Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect[J]. Journal of Magnetism & Magnetic Materials, 2010, 322(21): 3508-3513. |
6 | SHA L L, JU Y, ZHANG H, et al. Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field[J]. Applied Thermal Engineering, 2017, 113: 566-574. |
7 | GOHARKHAH M, ASHJAEE M, SHAHABADI M. Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field[J]. International Journal of Thermal Sciences, 2016, 99: 113-124. |
8 | MEI S Y, QI C, LUO T, et al. Effects of magnetic field on thermo-hydraulic performance of Fe3O4-water nanofluids in a corrugated tube[J]. International Journal of Heat and Mass Transfer, 2019, 128: 24-45. |
9 | AMANI M, AMERI M, KASAEIAN A. Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field[J]. Experimental Thermal & Fluid Science, 2017, 82: 439-449. |
10 | AZIZIAN R, DOROODCHI E, MCKRELL T, et al. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 68: 94-109. |
11 | 沙丽丽, 巨永林, 张华. 不同磁场作用下Fe3O4/water纳米流体层流流动对流传热系数的实验研究[J]. 化工学报, 2018, 69(4): 1349-1356. |
SHA L L, JU Y L, ZHANG H. Experimental investigation of convective heat transfer coefficient using Fe3O4/water nanofluids under different magnetic field in laminar flow[J].CIESC Journal, 2018, 69(4): 1349-1356. | |
12 | 吴治将, 殷少有. 磁性纳米流体Fe3O4-H2O对流换热特性研究[J]. 太阳能学报, 2015, 36(2): 517-521. |
WU J Z, YIN S Y. Study on convective heat transfer characteristics of Fe3O4-H2O magnetic nanofluids[J]. Acta Energiae Solars Sinica, 2015, 36(2): 517-521. | |
13 | MEI S Y, QI C, LIU M N, et al. Effects of paralleled magnetic field on thermo-hydraulic performances of Fe3O4-water nanofluids in a circular tube[J]. International Journal of Heat and Mass Transfer, 2019, 134: 707-721. |
14 | KARAMI E, RAHIMI M, AZIMI N. Convective heat transfer enhancement in a pitted microchannel by stimulation of magnetic nanoparticles[J]. Chemical Engineering and Processing:Process Intensification, 2018, 126: 156-167. |
15 | ASHJAEE M, GOHARKHAH M, KHADEM L A, et al. Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink[J]. Heat & Mass Transfer, 2015, 51(7): 953-964. |
16 | HATAMI N, BANARI A K, MALEKZADEH A, et al. The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube[J]. Physics Letters A, 2017, 381(5): 510-515. |
17 | GHOFRANI A, DIBAEI M H, SIMA A H, et al. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field[J]. Experimental Thermal & Fluid Science, 2013, 49: 193-200. |
18 | ZONNUZI S A, KHODABANDEH R, SAFARZADEH H, et al. Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field[J]. Experimental Thermal and Fluid Science, 2018, 91: 155-165. |
19 | SHA L L, JU Y L, ZHANG H. The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids[J]. Applied Thermal Engineering, 2017, 126: 108-116. |
20 | SALEHPOUR A, SALEHI S, SALEHPOUR S, et al. Thermal and hydrodynamic performances of MHD ferrofluid flow inside a porous channel[J]. Experimental Thermal and Fluid Science, 2018, 90: 1-13. |
21 | 张晖. 方腔内纳米流体自然对流传热研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. |
ZHANG H. Experiment and simulation study of natural convective heat transfer of TiO2/ethylene glycol nanofluid[D]. Harbin: Harbin Engineering University, 2015. | |
22 | 许春龙. 磁重力补偿下磁流体的自然对流与沸腾传热实验研究[D]. 上海: 上海大学, 2015. |
XU C L. Study on natural convection and boiling heat transfer of magnetic fluid under magnetic gravity compensation[D]. Shanghai: Shanghai University, 2015. | |
23 | BORUJENI N N, ETESAMI N, ESFAHANY M N. Experimental investigation of natural convection heat transfer of Fe3O4/ethylene glycol nanofluid under magnetic field[J]. International Centre for Heat and Mass Transfer, 2011(6): 380-388. |
24 | 王正良. 磁场强化磁性液体自然对流传热的实验测量[J]. 仪器仪表学报, 2005, 26(7): 715-717. |
WANG Z L. Experiment measuring the natural convection transmitting heat in magnetic fluid strengthened by magnetic field[J]. Chinese Journal of Scientific Instrument, 2005, 26(7): 715-717. | |
25 | JOUBERT J C, SHARIFPUR M, SOLOMON A B, et al. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets[J]. Journal of Magnetism & Magnetic Materials, 2017, 443: 149-158. |
26 | KRASZEWSKA A, PYRDA L, DONIZAK J. High magnetic field impact on the natural convection behaviour of a magnetic fluid[J]. Heat and Mass Transfer., 2017, 54(8): 2383-2394. |
27 | SHI L, HE Y, HU Y W, et al. Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field[J]. Energy Conversion and Management, 2018, 177: 249-257. |
28 | 梁龙, 张云峰, 张英才, 等. 磁场对热管传热性能的影响机理[J]. 动力工程学报, 2010, 30(11): 866-869. |
LIANG L, ZHANG Y F, ZHANG Y C, et al. Influence of magnetic field on heat transfer performance of heat pipe[J]. Journal of Chinese Society of Power Engineering, 2010, 30 (11): 866-869. | |
29 | YARAHMADI M, MOAZAMI G H, SHAFII M B. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes[J]. Experimental Thermal and Fluid Science, 2015, 68: 601-611. |
30 | BENNIA A, BOUAZIZ M N. CFD modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4, magnetic nanofluid in the presence of a magnetic field[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 127-136. |
31 | ASFER M, MEHTA B, KUMAR A, et al. Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube[J]. International Journal of Heat and Fluid Flow, 2016, 59: 74-86. |
32 | 毕胜山, 史琳. 纳米流体沸腾传热研究进展[J]. 化工进展, 2007, 26(10): 1411-1418. |
BI S S, SHI L. Research progress of boiling heat transfer of nanofluids[J]. Chemical Industry and Engineering Progress, 2007, 26 (10): 1411-1418. | |
33 | ZONOUZIA S A, AMINFARA H, MOHAMMADPOURFARD M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF[J]. Applied Thermal Engineering, 2019, 151: 11-25. |
34 | 林璟, 方利国. 纳米流体强化传热技术及其应用新进展[J]. 化工进展, 2008, 27(4): 488-494. |
LIN J, FANG L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488-494. | |
35 | ABDOLLAHI A, SALIMPOUR M R, ETESAMI N. Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid[J]. Applied Thermal Engineering, 2017, 111: 1101-1110. |
36 | TAKAHASHI M, SHINBO K, OHKAWA R, et al. Nucleate pool boiling heat transfer of magnetic fluid in a magnetic field[J]. Journal of Magnetism and Magnetic Materials, 1993, 122(1/2/3): 301-304. |
37 | SESEN M, TEKSEN Y, SENDUR K, et al. Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid[J]. Journal of Applied Physics, 2012, 112(6): 064320. |
38 | SHOJAEIAN M, YILDIZHAN M M, Ö COSKUN, et al. Investigation of change in surface morphology of heated surfaces upon pool boiling of magnetic fluids under magnetic actuation[J]. Materials Research Express, 2016, 3(9): 96-102. |
39 | ÖZDEMIR M R, SADAGHIANI A K, MOTEZAKKER A R, et al. Experimental studies on ferrofluid pool boiling in the presence of external magnetic force[J]. Applied Thermal Engineering, 2018, 139: 598-608. |
40 | 刘俊红, 顾建明, 连之伟, 等. 水基磁性流体池沸腾传热强化的实验研究[J]. 核动力工程, 2004, 25(1): 23-25. |
LIU J H, GU J M, LIAN Z W, et al. Experimental study on enhanced boiling heat transfer of water-based magnetic fluid pools[J]. Nuclear Power Engineering, 2004, 25(1): 23-25. | |
41 | KHOSHMEHR H H, SABOONCHI A, SHAFII M B, et al. The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid[J]. Applied Thermal Engineering, 2014, 64(1/2): 331-338. |
42 | LI S Y, JI W T, ZHAO C Y, et al. Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 128: 762-772. |
43 | FANG X D, WANG R, CHEN W W, et al. A review of flow boiling heat transfer of nanofluids[J]. Applied Thermal Engineering, 2015, 91: 1003-1017. |
44 | 周建阳, 罗小平, 李海燕, 等. 纳米粒子浓度对纳米流体流动沸腾传热及压降影响综合评价[J]. 化工进展, 2017, 36(1): 71-80. |
ZHOU J Y, LUO X P, LI H Y, et al. Comprehensive evaluation of the influence of nanoparticle concentrations on heat transfer and pressure drop of nanofluid flow boiling[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 71-80. | |
45 | 王二利, 罗小平. 矩形微槽道内磁纳米流体传热与流阻特性研究[J]. 石油化工设备, 2013, 42(1): 1-4. |
WANG E L, LUO X P. Research on heat transfer cofficent and flow resistance of magnetic nano-fluids in microchannels[J]. Petro-Chemical Equipment, 2013, 42(1): 1-4. | |
46 | VATANI A, WOODIFIELD P L, DINH T, et al. Degraded boiling heat transfer from hotwire in ferrofluid due to particle deposition[J]. Applied Thermal Engineering, 2018, 142: 255-261. |
47 | 唐杨. 微槽道中磁流体的CHF特性研究[D]. 广州: 华南理工大学, 2011. |
TANG Y. Study on the critical heat flux of magnetic fluids in microchannels[D]. Guangzhou: South China University of Technology, 2011. | |
48 | LEE T, LEE J H, JEONG Y H, et al. Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 101-106. |
49 | AMINFAR H, MOHAMMADPOURFARD M, RASOOL M. Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus[J]. Experimental Thermal and Fluid Science, 2014, 58: 156-169. |
50 | 刘俊红, 陆明琦, 刘辉, 等. 水基磁性流体水平加热棒下的池沸腾传热实验研究[J]. 应用基础与工程科学学报, 2004, 12(1): 61-66. |
LIU J H, LU M Q, LIU H, et al. Experiment study of pool boiling heat transfer of water-based magnetic fluid on a horizontal heater[J]. Journal of Basic Science and Engineering, 2004, 12(1): 61-66. | |
51 | SESEN M, TEKSEN Y, SAHIN B, et al. Boiling heat transfer enhancement of magnetically actuated nanofluids[J]. Applied Physics Letters, 2013, 102(16): 163107. |
52 | LEE J H, LEE T, JEONG Y H. Experimental study on the pool boiling CHF enhancement using magnetite-water nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(9/10): 2656-2663. |
53 | ISHIMOTO J, OKUBO M, KAMIYAMA S, et al. Bubble behavior in magnetic fluid under a nonuniform magnetic field[J]. International Journal of Multiphase Flow, 2008, 22(97): 382-387. |
54 | MOHAMMADPOURFARD M, AMINFAR H, KARIMI M. Numerical investigation of non-uniform transverse magnetic field effects on the swirling flow boiling of magnetic nanofluid in annuli[J]. International Communications in Heat & Mass Transfer, 2016, 75: 240-252. |
[1] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[2] | 朱启晨, 吴张永, 王志强, 蒋佳骏, 李翔. 低温下硅油基纳米磁流体沉降稳定性与黏度特性[J]. 化工进展, 2023, 42(10): 5101-5110. |
[3] | 熊鑫, 苏庆宗, 农增耀, 王亚雄. 加热方式对管壳式相变蓄热单元强化传热的可视化及数值模拟[J]. 化工进展, 2022, 41(9): 4635-4643. |
[4] | 朱孟帅, 王子龙, 孙向昕, 周翔. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211. |
[5] | 车中俊, 赵立新, 葛怡清. 磁场强化多相介质分离技术进展[J]. 化工进展, 2022, 41(6): 2839-2851. |
[6] | 刘鸿益, 杨光星, 余皓. 电磁感应加热用于可持续催化技术的研究进展[J]. 化工进展, 2022, 41(3): 1440-1452. |
[7] | 孙玄锴,吴懋亮,刘中俊,孙瀚霆. 梯度磁场对被动式质子交换膜燃料电池性能的影响[J]. 化工进展, 2020, 39(3): 924-929. |
[8] | 陈文, 吴张永, 张莲芝, 蔡晓明, 朱启晨. 环烷基NiFe2O4磁流体的制备及有磁场沉降稳定性[J]. 化工进展, 2019, 38(06): 2665-2673. |
[9] | 何照荣, 范志卿, 王大成. 电火花改性表面池沸腾换热特性[J]. 化工进展, 2018, 37(12): 4533-4542. |
[10] | 董帅, 李爽, 刘立帅, 叶学民. 磁场作用下导电流体的流动稳定性研究进展[J]. 化工进展, 2017, 36(S1): 17-26. |
[11] | 胡艳鑫, 黄凯鑫, 陈思旭, 汪双凤, 黄金. 自湿润流体的流动与传热特性研究进展[J]. 化工进展, 2017, 36(12): 4329-4342. |
[12] | 韩中合, 庞永超. 储气室热力学特性对AA-CAES性能的影响[J]. 化工进展, 2017, 36(01): 47-52. |
[13] | 陈梦寻, 张华, 娄江峰. 纳米制冷剂对换热和压缩机性能影响研究进展[J]. 化工进展, 2015, 34(12): 4145-4150. |
[14] | 陆至羚, 柳建华, 张良, 张瑞, 吴昊, 祁良奎. 微细通道内CO2沸腾换热与干涸特性[J]. 化工进展, 2015, 34(08): 2961-2966. |
[15] | 林檬,陈国,赵珺. 磁辅助生物反应器研究进展[J]. 化工进展, 2014, 33(05): 1252-1258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |