化工进展 ›› 2018, Vol. 37 ›› Issue (08): 2904-2911.DOI: 10.16085/j.issn.1000-6613.2017-1724

• 化工过程与装备 • 上一篇    下一篇

基于小波神经网络预测多相动态管道腐蚀速率

范峥1, 付文耀2, 赵笑男1, 李亚洲2, 李稳宏3, 毛振兴2   

  1. 1 西安石油大学化学化工学院, 陕西 西安 710065;
    2 中国石油天然气股份有限公司长庆油田分公司第十二采油厂, 甘肃 庆阳 745400;
    3 西北大学化工学院, 陕西 西安 710069
  • 收稿日期:2017-08-15 修回日期:2017-11-17 出版日期:2018-08-05 发布日期:2018-08-05
  • 通讯作者: 范峥(1982-),男,博士,副教授,研究方向为油气输送设备管线腐蚀与防护。
  • 作者简介:范峥(1982-),男,博士,副教授,研究方向为油气输送设备管线腐蚀与防护。E-mail:fanzheng@xsyu.edu.cn。
  • 基金资助:
    陕西省科学技术研究与发展计划项目(2016GY-150)。

Prediction of tubular corrosion rate under multiphase dynamics condition based on wavelet neural network

FAN Zheng1, FU Wenyao2, ZHAO Xiaonan1, LI Yazhou2, LI Wenhong3, MAO Zhenxing2   

  1. 1 College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi, China;
    2 The 12 th Oil Production Plant of Changqing Oilfield Branch Company, China National Petroleum Corporation, Qingyang 745400, Gansu, China;
    3 College of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
  • Received:2017-08-15 Revised:2017-11-17 Online:2018-08-05 Published:2018-08-05

摘要: 利用小波神经网络模型预测多相动态环境下油气集输管道腐蚀速率。首先通过室内多相动态腐蚀实验,获得了不同工况条件下的挂片腐蚀速率,用于训练和检验小波神经网络预测模型,然后利用多因子方差分析研究了温度、压力、流率、硫化氢含量、二氧化碳含量、溶解氧含量、含水率、盐含量和pH对腐蚀速率的影响程度,实现了各因素的有效性筛选,最后在确定隐含层节点数基础上通过训练、测试建立起适宜的小波神经网络预测模型,并进一步验证了模型可靠性。结果表明:除了压力外,各因素对腐蚀速率均有十分显著的影响,属于有效输入信号。当隐含层节点数为17时,8-17-1型小波神经网络结构表现出良好的准确性和稳定性。利用Levenberg Marquardt优化算法对模型进行了反复训练,直至其均方根误差小于容许收敛误差限0.001,预测值与实际值近似呈线性关系,训练、测试阶段决定系数分别为0.9992、0.9967,相关性较高,模型预测值和验证值亦不存在显著差异。因此小波神经网络预测模型对多相动态环境下油气集输管道腐蚀速率具有良好的预测能力。

关键词: 神经网络, 因素有效性, 结构, 腐蚀, 预测

Abstract: Wavelet neural network model was obtained to predict tubular corrosion rate for oil-gas gathering and transferring under multiphase dynamics condition. The laboratory multiphase dynamics corrosion experiment was adopted firstly in order to gain coupon corrosion rate in conditions of various operating situation for learning and testing of wavelet neural network prediction model. Then, a multi-factors analysis of variance was used to research the influence on corrosion rate of temperature, pressure, velocity, hydrogen sulfide content, carbon dioxide content, dissolved oxygen content, moisture content, salt content and pH to fulfill factor validity filtration. Finally, the suitable wavelet neural network prediction model was established by the way of learning and testing in the basis of recognition of neuron number of hidden layer. The model reliability was further verified. The result showed that above factors except pressure had great impact on corrosion rate and were considered as effective input signals. 8-17-1 type of wavelet neural network structure exhibited the favorable accuracy and stability when neuron number hidden layer was 17. Levenberg Marquardt optimization algorithm was chosen to train model repeatedly until its root mean square error less than convergence tolerance 0.001. The predicted value was approximately linear with the experimental value. The determination coefficient of learning stage and testing stage was 0.9992 and 0.9967, respectively, and demonstrated the superior correlation. There was also no significant difference between model predicted value and verified one. Therefore, the prediction model of wavelet neural network possessed well capacity of tubular corrosion rate for oil-gas gathering and transferring under multiphase dynamics condition.

Key words: neural network, factor validity, structure, corrosion, prediction

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn