化工进展 ›› 2018, Vol. 37 ›› Issue (04): 1229-1246.DOI: 10.16085/j.issn.1000-6613.2017-2136
马学虎1, 梁倩卿1,2, 王凯1, 兰忠1, 郝婷婷1, 白涛1, 王亚雄2
收稿日期:
2017-10-19
修回日期:
2017-11-29
出版日期:
2018-04-05
发布日期:
2018-04-05
通讯作者:
马学虎(1965-),男,博士,教授,博士生导师,研究方向为功能表面材料与界面传递现象。
作者简介:
马学虎(1965-),男,博士,教授,博士生导师,研究方向为功能表面材料与界面传递现象。E-mail:xuehuma@dlut.edu.cn。
基金资助:
MA Xuehu1, LIANG Qianqing1,2, WANG Kai1, LAN Zhong1, HAO Tingting1, BAI Tao1, WANG Yaxiong2
Received:
2017-10-19
Revised:
2017-11-29
Online:
2018-04-05
Published:
2018-04-05
摘要: 微化工技术在流体流动、过程强化、传质与反应过程等领域备受关注,本文归纳整理了3种不同类型的微吸收器(微降膜吸收器、微通道吸收器和微网格吸收器)捕集CO2过程中的水力学性质和传质过程及其机理研究进展,并对3种微吸收器吸收CO2过程中存在的问题进行分析总结,同时对微吸收器能快速工业化提出展望。其中重点介绍了微通道泰勒流吸收器的水力学流动特性,包括泰勒流气泡的生成机制、气泡和液弹的长度、气泡的输运和运动速度、气泡截面形状及液膜厚度和气液两相流压降;归纳了微通道泰勒流吸收过程的传质过程机理和传质系数的模型以及不同影响因素(通道截面尺寸,通道长度,主通道结构及入口形状,气、液相组成及其流速,吸收剂和系统压力)作用下CO2吸收效率和传质系数的研究进展。
中图分类号:
马学虎, 梁倩卿, 王凯, 兰忠, 郝婷婷, 白涛, 王亚雄. 基于微吸收器的CO2吸收过程研究进展[J]. 化工进展, 2018, 37(04): 1229-1246.
MA Xuehu, LIANG Qianqing, WANG Kai, LAN Zhong, HAO Tingting, BAI Tao, WANG Yaxiong. Progress of CO2 absorption process in micro-absorbers[J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1229-1246.
[1] KEITH D. Why capture CO2 from the atmosphere?[J]. Science,2009,325(25):1654-1655. [2] CENTI G,PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels[J]. Catalysis Today,2009,148(3/4):191-205. [3] OLAH G,GOEPPERT A,PRAKASH G. Chemical recycling of carbon dioxide to methanol and dimethyl ether:from greenhouse gas to renewable,environmentally carbon neutral fuels and synthetic hydrocarbons[J]. Journal of Organic Chemistry,2009,74(2):487-498. [4] OLAH G,PRAKASH G,GOEPPERT A. Anthropogenic chemical carbon cycle for a sustainable future[J]. Journal of the American Chemical Society,2011,133(33):12881-12898. [5] LANGANKE J,WOLF A,HOFMANN J,et al.Carbon dioxide (CO2) as sustainable feedstock for polyurethane production[J]. Green Chemistry,2014,16:1865-1870. [6] BHADURI G,SILLER L. Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage[J]. Catalysis Science & Technology,2013,3:1234-1239. [7] LEITNER W. Supercritical carbon dioxide as a green reaction medium for catalysis[J]. Accounts of Cheimcal Research,2002,35(9):746-756. [8] ABOLHASANI M,GNTHER A,KUMACHEVA E. Microfluidic studies of carbon dioxide[J]. Angewandte Chemie International Edition,2014,53:2-13. [9] YU C H,HUANG C H,TAN C S. A review of CO2 capture by absorption and adsorption[J]. Aerosol and Air Quality Research,2012,12:745-769. [10] 陈光文,袁泉. 微化工技术[J]. 化工学报,2003,54(4):427-439. CHEN G W,YUAN Q. Micro-chemical technology[J]. CIESC Journal,2003,54(4):427-439. [11] 陈光文,赵玉潮,乐军,等. 微化工过程中的传递现象[J]. 化工学报,2013,64(1):63-75. CHEN G W,ZHAO Y C,YUE J,et al. Transport phenomena in micro-chemical engineering[J]. CIESC Journal,2013,64(1):63-75. [12] 李洪钟. 过程工程:物质·能源·智慧[M]. 北京:科学出版社,2010. LI H Z. Process engineering:material,energy,wisdom[M]. Beijing:Science Press,2010. [13] 李战华,吴健康,胡国庆,等. 微流控芯片中的流体流动[M]. 北京:科学出版社,2012. LI Z H,WU J K,HU G Q,et al. Fluid flow in microfluidic chip[M]. Beijing:Science Press,2010. [14] YUE J,CHEN G,YUAN Q,et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science,2007,62:2096-2108. [15] 马友光,付涛涛,朱春英. 微通道内气液两相流行为研究进展[J]. 化工进展,2007,26(8):1068-1074. MA Y G,FU T T,ZHU C Y. Progress of studies on gas-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress,2007,26(8):1068-1074. [16] 周月,潘美园,陈桂子,等. 金属套管式微通道气液传质特性研究[J]. 北京化工大学学报(自然科学版),2013,40(3):12-16. ZHOU Y,PAN M Y,CHEN G Z,et al. Gas-liquid mass transfer performance in a metal tube-in-tube microchannel[J]. Journal of Beijing University of Chemical Technology(Natural Science),2013,40(3):12-16. [17] 尧超群,乐军,赵玉潮,等. 微通道内气-液弹状流动及传质特性研究进展[J]. 化工学报,2015,66(8):2759-2766. YAO C Q,YUE J,ZHAO Y C,et al. Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J]. CIESC Journal,2015,66(8):2759-2766. [18] HESSEL V,ANGELI P,GAVRⅡLIDIS A,et al. Gas-liquid and gas-liquid-solid microstructured reactors:contacting pinciples and applications[J]. Industrial & Engineering Chemistry Research,2005,44:9750-9769. [19] LAM K,SORENSEN E,GAVRⅡLIDIS A. Review on gas-liquid separations in microchannel devices[J]. Chemical Engineering Research and Design,2013,91:1941-1953. [20] YAO C Q,DONG Z Y,ZHAO Y C,et al. The effect of system pressure on gas-liquid slug flow in a microchannel[J]. AIChE Journal,2014,60(3):1132-1142. [21] CONSTANTINOU A,BARRASS S,PRONK F,et al. CO2 absorption in a high efficiency silicon nitride mesh contactor[J]. Chemical Engineering Journal,2012,207/208:766-771. [22] MORISON K R,WORTH Q A G,O'Dea N P. Minimum wetting and distribution rates in falling film evaporators[J]. Food Bioprod. Process,2006,84:302-310. [23] ANASTASIOU A,MAKATSORIS C,GAVRⅡLIDIS A,et al. Application of μ-PIV for investigating liquid film characteristics in an open inclined microchannel[J]. Experimental Thermal & Fluid Science,2013,44:90-99. [24] CHASANIS P,LAUTENSCHLEGER A,KENIG E. Numerical investigation of carbon dioxide absorption in a falling-film micro-contactor[J]. Chemical Engineering Journal,2010,65:1125-1133. [25] ZHANG H C,YUE J,CHEN G W,et al. Flow pattern and break-up of liquid film in single-channel falling film microreactors[J]. Chemical Engineering Journal,2010,163:126-132. [26] ANASTASIOU A,GAVRⅡLIDIS A,AIKATERINI A. Study of the hydrodynamic characteristics of a free flowing liquid film in open inclined microchannels[J]. Chemical Engineering Science,2013,101:744-754. [27] GILJEAN S,BIGERELLE M,ANSELME K. New insights on contact angle/roughness dependence on high surface energy materials[J]. Applied Surface Science,2011,257:9631-9638. [28] YEONG K,GAVRⅡLIDIS A,ZAPF R,et al. Characterization of liquid film in a microstructured falling film reactor using laser scanning confocal microscopy[J]. Experimental Thermal & Fluid Science,2006,30:463-472. [29] ANASTASIOU A,MAKATSORIS C,GAVRⅡLIDIS A,et al. Application of μ-PIV for investigating liquid film characteristics in an open inclined microchannel[J]. Experimental Thermal and Fluid Science,2013,44:90-99. [30] MONNIER H,MHIRI N,FALK L. Falling liquid film stability in microgas/liquid absorption[J]. Chemical Engineering and Processing,2010,49:953-957. [31] ZHANG H C,CHEN G W,YUE J,et al. Hydrodynamics and mass transfer of gas-liquid flow in a falling film microreactor[J]. AIChE Journal,2009,55(5):1110-1120. [32] TOURVIEILLE J,BORNETTE F,PHILIPPE R,et al. Mass transfer characterisation of a microstructured falling film at pilot scale[J]. Chemical Engineering Journal,2013,227:182-190. [33] ZANFIR M,GAVRⅡLIDIS A,WILLE C,et al. Carbon dioxide absorption in a falling film microstructured reactor:experiments and modeling[J]. Industrial & Engineering Chemistry Research,2005,44:1742-1751. [34] AL-RAWASHDEH M,HESSEL V,LÖBA P,et al. Pseudo 3-D simulation of a falling film microreactor based on realistic channel and film profiles[J]. Chemical Engineering Science,2008,63:5149-5159. [35] AL-RAWASHDEH M,CANTU-PEREZ A,ZIEGENBALG D,et al. Microstructure-based intensification of a falling film microreactor through optimal film setting with realistic profiles and in-channel induced mixing[J]. Chemical Engineering Journal,2012,179:318-329. [36] ZIEGENBALG D,PATRICKLÖB,AL-RAWASHDEH M,et al. Use of ‘smartinterfaces’ to improve the liquid-sided mass transport in a falling film microreactor[J]. Chemical Engineering Science,2010,65:3557-3566. [37] SOBIESZUK P,POHORECKI R. Gas-side mass transfer coefficients in a falling film microreactor[J]. Chemical Engineering and Processing,2010,49:820-824. [38] GANAPATHY H,STEINMAYER S,SHOOSHTARI A,et al. Enhanced carbon capture in a multiport microscale absorber[C]//Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition,2013. [39] LOKHAT D,DOMAH A,PADAYACHEE K,et al. Gas-liquid mass transfer in a falling film microreactor:effect of reactor orientation on liquid-side mass transfer coefficient[J]. Chemical Engineering Science,2016,155:38-44. [40] TRIPLETT K,GHIAASIAAN S,ABDEL-KHALIK S,et al. Gas-liquid two-phase flow in microchannels,Part I:Two-phase flow patterns[J]. International Journal of Multiphase Flow,1999,25:377-394. [41] AKBAR M,PLUMMER D,GHIAASIAAN S. On gas-liquid two-phase flow regimes in microchannels[J]. International Journal of Multiphase Flow,2003,29:855-865. [42] CUBAUD T,HO C. Transport of bubbles in square microchannels[J]. Physics of Fluids,2004,16:4575-4585. [43] HASSAN I,VAILLANCOURT M,PEHLIVAN K. Two-phase flow regime transitions in microchannels:a comparative experimental study[J]. Microscale Thermophysical Engineering,2005,9:165-182. [44] WAELCHLI S,VON ROHR P. Two-phase flow characteristics in gas-liquid microreactors[J]. International Journal of Multiphase Flow,2006,32:791-806. [45] YUE J,LUO L G,GONTHIER Y,et al. An experimental investigation of gas-liquid two-phase flow in single microchannel contactors[J]. Chemical Engineering Science,2008,63(16):4189-4202. [46] KAWAHARA A,SADATOMI M,NEI K,et al. Experimental study on bubble velocity,void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel[J]. International Journal of Multiphase Flow,2009,30(5):831-841. [47] ZHANG T,CAO B,FAN Y L,et al. Gas-liquid flow in circular microchannel (Ⅰ):influence of liquid physical properties and channel diameter on flow patterns[J]. Chemical Engineering Science,2011,66(23):5791-5803. [48] CHOI C,YU D,KIM M. Adiabatic two-phase flow in rectangular microchannels with different aspect ratios (Ⅰ):flow pattern,pressure drop and void fraction[J]. International Journal of Heat and Mass Transfer,2011,54(1/2/3):616-624. [49] SHAO N,SALMAN W,GAVRⅡLIDIS A,et al. CFD simulations of the effect of inlet conditions on Taylor flow formation[J]. International Journal of Heat & Fluid Flow,2008,29:1603-1611. [50] SHAO N,GAVRⅡLIDIS A,ANGELI P. Flow regimes for adiabatic gas-liquid flow in microchannels[J]. Chemical Engineering Science,2009,64:2749-2761. [51] LIN H G,CHEN J F,CHEN C P. A novel technology:microfluidic devices for microbubble ultrasound contrast agent generation[J]. Medical & Biological Engineering & Computing,2016,54(9):1317-1330. [52] GARSTECKI P,FUERSTMAN M J,STONE H A,et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on A Chip,2006,6:437-446. [53] DE MENECH M,GARSTECKI P,JOUSSE F,et al. Transition from squeezing to dripping in a microfluidic T-junction[J]. Journal of Fluid Mechanics,2008,24:13904-13911. [54] ABATE A R,MARY P,VAN S V,et al. Experimental validation of plugging during drop formation in a T-junction[J]. Lab on A Chip,2012,12:1516-1521. [55] GANAPATHY H,AL-HAJRI E,OHADI M. Phase field modeling of Taylor flow in mini/microchannels. Part Ⅰ:Bubble formation mechanisms and phase field parameters[J]. Chemical Engineering Science,2013,94:138-149. [56] YAO C Q,ZHAO Y C,YE C B,et al. Characteristics of slug flow with inertial effects in a rectangular microchannel[J]. Chemical Engineering Science,2013,95:246-256. [57] STEIJN V V,KREUTZER M,KLEIJN C. μ-PIV study of the formation of segmented flowin microfluidic T-junctions[J]. Chemical Engineering Science,2007,62:7505-7514. [58] TAN J,LI S W,WANG K,et al. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J].Chemical Engineering Journal,2009,146:428-433. [59] XIONG R Q,CHUNG J N. Bubble generation and transport in a microfluidic device with high aspect ratio[J]. Experimental Thermal & Fluid Science,2009,33:1156-1162. [60] FU T T,MA Y G,FUNFSCHILLING D,et al. Squeezing to dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science,2010,65:3739-3748. [61] YAO C Q,DONG Z Y,ZHAO Y C,et al. Gas-liquid flow and mass transfer in a microchannel under elevated pressures[J]. Chemical Engineering Science,2015,123:137-145. [62] QIAN D,LAWAL A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science,2006,61:7609-7625. [63] ZUBER N,FINDLAY J. Average volumetric concentration in two-phase flow systems[J]. ASME Journal of Heat Transfer,1965,87(4):453-468. [64] TSOLIGKAS A,SIMMONS M,WOOD J. Influence of orientation upon the hydrodynamics of gas-liquid flowfor square channels in monolith supports[J]. Chemical Engineering Science,2007,62:4365-4378. [65] YUE J,LUO L G,GONTHIER Y,et al. An experimental study of air-square microchannels[J]. Chemical Engineering Science,2009,64:3697-3708. [66] CHOI C,YU D,KIM M. Adiabatic two-phase flow in rectangular microchannels with different aspect ratios:Part Ⅱ-Bubble behaviors and pressure drop in single bubble[J]. International Journal Heat and Mass Transfer,2010,53:5242-5249. [67] ABADIE T,AUBIN J,LEGENDRE D,et al. Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels[J]. Microfluid Nanofluid,2012,12:355-369. [68] KOLB W,CERRO R. Coating the inside of a capillary of square cross-section[J]. Chemical Engineering Science,1991,46(9):2181-2195. [69] THULASIDAS T,ABRAHAM M,CERRO R. Bubble-train flow in capillaries of circular and square cross-section[J]. Chemical Engineering Science,1995,50(2):183-199. [70] HAZEL A,HEIL M. The steady propagation of asemi-infinite bubble into a tube of elliptical or rectangularcross-section[J]. Journal of Fluid Mechanics,2002,470:91-114. [71] FAIRBROTHER F,STUBBS A. Studies in electro-endosmosis. PartⅥ. The "bubble-tube" method of measurement[J]. Journal of the Chemical Society(Resumed),1935:527-529. [72] TAYLOR G. Deposition of a viscous fluid on the wall of a tube[J]. Journal of Fluid Mechanics,1960,10:161-165. [73] BRETHERTON F. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics,1961,10:166-188. [74] AUSSILLOUS P,QUERE D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids,2000,12(10):2367-2371. [75] HAN Y,SHIKAZONO N. Measurement of the liquid film thickness in micro tube slug flow[J]. International Journal of Heat and Fluid Flow,2009,30:842-853. [76] HOWARD J,WALSH P. Review and extensions to filmthickness and relative bubble drift velocity predictionmethods in laminar Taylor or slug flows[J]. International Journal of Multiphase Flow,2013,55:32-42. [77] LIU D S,WANG S D. Hydrodynamics of Taylor flow in noncircular capillaries[J]. Chemical Engineering and Processing,2008,47:2098-2106. [78] MEYER C,HOFFMANN M,SCHLÜTER M. Micro-PIV analysis of gas-liquid Taylor flow in a vertical oriented square shaped fluidic channel[J]. International Journal of Multiphase Flow,2014,67:140-148. [79] CHEN H S,MENG Q,LI J. Thin lubrication film around moving bubbles measured in square microchannels[J]. Applied Physics Letters,2015,107:141608. [80] CHEN H S,LI Z N,LI J. Thin-film profile around long bubbles in square microchannels measured by chromatic interference method[J]. Applied Physics Letters,2016,109(4):041604. [81] YAN C X,YAN C Q,SHEN Y H,et al. Evaluation analysis of correlations for predicting the void fraction and slug velocity of slug flow in an inclined narrow rectangular duct[J]. Nuclear Engineering & Design,2014,273(10):155-164. [82] CHUNG P,KAWAJI M. The effect of channel diameter on adiabatic two phase flow characteristics in microchannels[J]. International Journal of Multiphase Flow,2004,30:735-761. [83] SAISORN S,WONGWISES S. The effects of channel diameter on flow pattern,void fraction and pressure drop of two-phase air-water flow in circular micro-channels[J]. Experimental Thermal and Fluid Science,2010,34(4):454-462. [84] XIONG R Q,CHUNG J N. An experimental study of the size effect on adiabatic gas-liquid two-phase flow patterns and void fraction in microchannels[J]. Physics of Fluids,2007,19:033301. [85] RATULOWSKI J,CHANG H. Transport of gas bubbles in capillaries[J]. Physics of Fluids A,1989,1(10):1642-1655. [86] FUERSTMAN M,LAI A,THURLOW M,et al. The pressure drop along rectangular microchannels containing bubbles[J]. Lab on A Chip,2007,7(11):1479-1489. [87] WONG H,RADKE CJ,MORRIS S. The motion of long bubbles in polygonal capillaries. Part 2. Drag,fluid pressure and fluid flow[J]. Journal of Fluid Mechanics,1995,292:95-110. [88] KREUTZER M,KAPTEIJN F,MOULIJI J,et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries[J]. AIChE Journal,2005,51(9):2428-2440. [89] WALSH E,MUZYCHK Y,WALSH P,et al. Pressure drop in two phase slug/bubble flows in mini scale capillaries[J]. International Journal of Multiphase Flow,2009,35:879-884. [90] WARNIER M,DE CROON M,REBROV E,et al. Pressure drop of gas-liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers[J]. Microfluid Nanofluid,2010,8:33-45. [91] EAIN M,EGAN V,HOWARD J,et al. Review and extension of pressure drop models applied to Taylor flow regimes[J]. International Journal of Multiphase Flow,2015,68:1-9. [92] FRIES D,VON ROHR S. Liquid mixing in gas-liquid two-phase flow by meandering microchannels[J]. Chemical Engineering Science,2009,64(6):1326-1335. [93] 付博,袁希钢,张会书,等. 伴有Rayleigh对流的气液传质理论[J]. 化工学报,2017,64(s1):21-25. FU B,YUAN X G,ZAHNG H S,et al. Gas-liquid mass transfer theory accompanied by Rayleigh convection[J]. CIESC Journal,2017,64(s1):21-25. [94] SUN R P,CUBAUD T. Dissolution of carbon dioxide bubbles and microfluidic multiphase flows[J]. Lab Chip,2011,11:2924-2928. [95] CUBAUD T,SAUZADE M,SUN R. CO2 dissolution in water using long serpentine microchannels[J]. Biomicrofluidics,2012,6:022002. [96] SHIM S,WAN J D,HILGENFELDT S,et al. Dissolution without disappearing:multicomponent gas exchange for CO2 bubbles in a microfluidic channel[J]. Lab Chip,2014,14:2428-2436. [97] TAN J,LU Y C,XU J H,et al. Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chemical Engineering Journal,2012,181/182:229-235. [98] TAN J,LU Y C,XU J H,et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel[J]. Chemical Engineering Journal,2012,185/186:314-320. [99] YAO C Q,DONG Z Y,ZHAO Y C,et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science,2014,112:15-24. [100] ZHU C Y,LI C F,GAO X Q,et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. International Journal of Heat and Mass Transfer,2014,73(7):492-499. [101] LI W,LIU K,SIMMS R. Microfluidic study of fast gas-liquid reactions[J]. J. Am. Chem. Soc,2012,134:3127-3132. [102] TUMARKIN E,NIE Z H,PARK J I,et al. Temperature-controlled ‘breathing’ of carbon dioxide bubbles[J]. Lab Chip,2011,11:3545-3550. [103] LEFORTIER S G R,HAMERSMA P J,BARDOW A,et al. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab Chip,2012,12:3387-3391. [104] SOBIESZUK P,POHORECKI R,CYGAN'SKI P,et al. Determination of the interfacial area and mass transfer coefficients in the Taylor gas-liquid flow in a microchannel[J]. Chemical Engineering Science,2011,66:6048-6056. [105] HAASE S,BAUER T. New method for simultaneous measurement of hydrodynamics and reaction rates in a mini-channel with Taylor flow[J]. Chemical Engineering Journal,2011,176/177:65-74. [106] VAN BATEN J M,KRISHNA R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science,2004,59:2535-2545. [107] VANDU C O,LIU H,KRISHNA R. Mass transfer from Taylor bubbles rising in single capillaries,mass transfer from Taylor bubbles rising in single capillaries[J]. Chemical Engineering Science,2005,60:6430-6437. [108] SHAO N,GAVRⅡLIDIS A,ANGELI P. Mass transfer during Taylor flow in microchannels with and without chemical reaction[J]. Chemical Engineering Journal,2010,160:873-881. [109] ABOLHASANI M,KUMACHEVA E,GÜNTHER A. Peclet number dependence of mass transfer in microscale segmented gas-liquid flow[J]. Industrial & Engineering Chemistry Research,2015,54:9046-9051. [110] YUE J,CHEN G W,YUAN Q,et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science,2007,62:2096-2108. [111] LIU D S,WANG S D. Gas-liquid mass transfer in Taylor flow through circular capillaries[J]. Industrial & Engineering Chemistry Research,2011,50:2323-2330. [112] KUHN S,JENSEN K F. A pH-sensitive laser-induced fluorescence technique to monitor mass transfer in multiphase flows in microfluidic devices[J]. Industrial & Engineering Chemistry Research,2012,51:8999-9006. [113] 梁倩卿,春江,王凯,等. 弯曲型微通道吸收CO2/N2混合气的传质性能[J]. 高校化学工程学报,2017,31(4):784-793. LIANG Q Q,CHUN J,WANG K,et al. Mass transfer characteristics during CO2/N2 mixture absorption in a meandering-microchannel[J]. Journal of Chemical Engineering of Chinese Universities,2017,31(4):784-793. [114] ABIEV R. Bubbles velocity,Taylor circulation rate and mass transfer model for slug flow in milli-and microchannels[J]. Chemical Engineering Journal,2013,227:66-79. [115] NIU H N,PAN L W,SU H J,et al. Effects of design and operating parameters on CO2 absorption in microchannel contactors[J]. Industrial & Engineering Chemistry Research,2009,48:8629-8634. [116] KUNDU A,BASU J K,DAS G. A novel gas-liquid contactor for chemisorption of CO2[J]. Separation & Purification Technology,2012,94:115-123. [117] GANAPATHY H,AL-HAJRI E,OHADI M M. Mass transfer characteristics of gas-liquid absorption during Taylor flow in mini/microchannel reactors[J]. Chemical Engineering Science,2013,101:69-80. [118] GANAPATHY H,AL-HAJRI E,OHADI M M. Phase field modeling of Taylor flow in mini/microchannels. Part Ⅰ:Bubble formation mechanisms and phase field parameters[J]. Chemical EngineeringScience,2013,94:138-149. [119] GANAPATHY H,AL-HAJRI E,OHADI M M. Phase field modeling of Taylor flow in mini/microchannels. Part Ⅱ:Hydrodynamics of Taylor flow[J]. Chemical Engineering Science,2013,94:156-165. [120] GANAPATHY H,SHOOSHTARI A,DESSIATOUN S,et al. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes[J]. Chemical Engineering Journal,2015,266:258-270. [121] SHAO N,GAVRⅡLIDIS A,ANGELI P. Mass transfer during Taylor flow in microchannels with and without chemical reaction[J]. Chemical Engineering Journal,2010,160:873-881. [122] GANAPATHY H,SHOOSHTARI A,DESSIATOUN S,et al. Experimental investigation of enhanced absorption of carbon dioxide in diethanolamine in a microreactor[C]//Proceedings of the ASME 201311th International Conference on Nanochannels,Microchannels,and Minichannnels,2013. [123] SHOOSHTARI A,KUZMICKI R,DESSIATOUN S,et al. Enhancement of CO2 absorption in aqueous diethanolamine using microchannel contactors[C]//Proceedings of Carbon Management Technology Conference,2012. [124] LI C F,ZHU C Y,MA Y G,et al. Experimental study on volumetric mass transfer coefficient of CO2 absorption into MEA aqueous solution in a rectangular microchannel reactor[J]. International Journal of Heat and Mass Transfer,2014,78:1055-1079. [125] GANAPATHY H,STEINMAYER S,SHOOSHTARI A,et al. Process intensification characteristics of a microreactor absorber for enhanced CO2 capture[J]. Applied Energy,2016,162:416-427. [126] NIU H N,PAN L W,SU H J,et al. Flow pattern,pressure drop,and mass transfer in a gas-liquid concurrent two-phase flow microchannel reactor[J]. Industrial & Engineering Chemistry Research,2009,48:1621-1628. [127] ZHU C Y,LI C F,GAO X Q,et al. Taylor flow and mass transfer of CO2 chemical absorption into MEA aqueous solutions in a T-junction microchannel[J]. International Journal of Heat and Mass Transfer,2014,73(7):492-499. [128] 周旭,王晓静,朱春英,等. 微通道内二乙醇胺/乙醇溶液吸收CO2 的传质性能[J]. 化工学报,2016,67(7):2901-2906. ZHOU X,WANG X J,ZHU C Y,et al. Mass transfer performance of CO2 absorption into DEA/ethanol solution in microchannel[J]. CIESC Journal,2016,67(7):2901-2906. [129] TAN J,LI S W,WANG K,et al. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal,2009,146:428-433. [130] TAN J,DU L,XU J H,et al. Surfactant free microdispersion process of gas in organic solvents in microfluidic devices[J]. AIChE Journal,2011,57:2647-2656. [131] YE C B,DANG M H,YAO C Q,et al. Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors[J]. Chinese Journal of Chemical Engineering,2013,225:120-127. [132] 孙俊杰,郝婷婷,马学虎,等. 壁面润湿性对微通道内二氧化碳-水两相流流动及传质性能的影响[J]. 化工学报,2015,66(9):3405-3412. SUN J J,HAO T T,MA X H,et al. Surface wettability effect on carbon dioxide-water two-phase flow and mass transfer in rectangular microchannel[J]. CIESC Journal,2015,66(9):3405-3412. [133] YAO C Q,LIU Y,ZHAO S,et al. Bubble/droplet formation and mass transfer during gas-liquid-liquid segmented flow with soluble gas in a microchannel[J]. AIChE Journal,2016,63(5):1727-1739. [134] DONG Z Y,YAO C Q,ZHANG Y C,et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[J]. AIChE Journal,2016,62(4):1294-1307. [135] CONSTANTINOU A,GAVRⅡLIDIS A. CO2 absorption in a microstructured mesh reactor[J]. Industrial & Engineering Chemistry Research,2010,49:1041-1049. [136] CONSTANTINOU A,BARRASS S,GAVRⅡLIDIS A. CO2 absorption in polytetrafluoroethylene membrane microstructured contactor using aqueous solutions of amines[J]. Industrial & Engineering Chemistry Research,2014,53:9236-9242. |
[1] | 董林, 陈青柏, 王建友, 李鹏飞, 王进. 电渗析苦咸水淡化技术研究进展[J]. 化工进展, 2022, 41(4): 2102-2114. |
[2] | 张玉荣, 唐猛, 刘燕, 王德武, 王璐莎, 张少峰. NaOH-CO2体系下并流立体旋流筛板塔传质性能[J]. 化工进展, 2021, 40(11): 6019-6026. |
[3] | 何庆生, 范景福, 张建成. 气升式环流生物反应器微孔气体分布器结构优化与性能[J]. 化工进展, 2020, 39(S1): 64-68. |
[4] | 肖卓楠, 白冬晓, 张天睿, 曾梓芸, 陈伟鹏. 孔板管道流动加速腐蚀受温度影响的数值模拟[J]. 化工进展, 2019, 38(s1): 27-32. |
[5] | 王成龙, 张金利, 张敏卿. 半弧面斜叶桨的流体力学性能与氧传质特性[J]. 化工进展, 2018, 37(11): 4150-4161. |
[6] | 周云龙, 司梦银, 左元慧, 康诗飞, 王燕刚, 史焕聪, 崔立峰. 燃烧尾气后处理的反应溶剂型大型工业CO2吸收塔工艺技术进展[J]. 化工进展, 2016, 35(S1): 1-9. |
[7] | 郭强, 祁贵生, 刘有智, 董梅英, 宋彬, 王探. 不同规整填料旋转床的传质性能对比[J]. 化工进展, 2016, 35(03): 741-747. |
[8] | 谷德银,刘有智,祁贵生,师小杰. 新型旋转填料床强化气膜控制传质过程[J]. 化工进展, 2014, 33(09): 2315-2320. |
[9] | 祝 杰,叶世超,白 洁,吴振元,李俊宏,曾晓娟. 微分散轮盘塔萃取净化湿法磷酸的实验研究[J]. 化工进展, 2013, 32(07): 1685-1690. |
[10] | 李 强,赵雪冰,杜 伟,刘德华. 气升式振荡环流反应器的数值模拟和结构优化[J]. 化工进展, 2012, 31(08): 1690-1699. |
[11] | 杨春玲,张有忱,黎镜中. 新型气液混输型曝气增氧设备性能 [J]. 化工进展, 2011, 30(3): 483-. |
[12] | 张秀芝,王 静,张雨山,郭鸿博,王树勋. 气态膜吸收法脱除水中氨的传质效果 [J]. 化工进展, 2011, 30(2): 438-. |
[13] | 张燕青1,潘朝群2,邓先和2,张一敏3. 多级雾化旋转填料床的传质性能 [J]. 化工进展, 2010, 29(2): 228-. |
[14] | 王志强,贺高红,李 宁,林 畅. 硅橡胶复合膜处理含酚废水 [J]. 化工进展, 2006, 25(3): 305-. |
[15] | 杨座国,许振良,邴乃慈. 分子印迹膜的研究进展 [J]. 化工进展, 2006, 25(2): 131-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |