[1] 张兴祥, 王馨, 吴文健. 相变材料胶囊制备与应用[M]. 北京:化学工业出版社, 2009. [2] Delgado M, Lázaro A, Mazo J, et al. Experimental analysis of a microencapsulated PCM slurry as thermal storage system and as heat transfer fluid in laminar flow[J]. Applied Thermal Engineering, 2012, 36(4):370-377. [3] Delgado M, Lázaro A, Peñalosa C, et al. Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry[J]. Applied Thermal Engineering, 2014, 63(1):11-22. [4] Jamekhorshid A, Sadrameli S M, Farid M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31:531-542. [5] Neubauer M P, Poehlmann M, Fery A. Microcapsule mechanics:From stability to function[J]. Advances in Colloid and Interface Science, 2014, 207(5):65-80. [6] 李建立, 刘录, 赵杰. 相变材料微胶囊机械性能评价方法研究进展[J]. 北京石油化工学院学报, 2012(4):29-33. [7] Jessica G P, Gerard O, Camila B, et al. Physico-chemical and mechanical properties of microencapsulated phase change material[J]. Applied Energy, 2013, 109(9):441-448. [8] Rahman A, Dickinson M, Farid M. Microindentation of microencapsulated phase change materials[J]. Advanced Materials Research, 2011, 275:85-88. [9] Zhang Z, Saunders R, Thomas C R. Mechanical strength of single microcapsules determined by a novel micromanipulation technique[J]. Journal of Microencapsulation, 1999, 16:117-124. [10] Sun G, Zhang Z. Mechanical properties of melamine formaldehyde microcapsules[J]. Journal of Microencapsulation, 2001, 18:593-602. [11] Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials[J]. International Journal of Pharmaceutics, 2002, 242(1-2):307-311. [12] Hu J, Chen H Q, Zhang Z. Mechanical properties of melamine formaldehyde microcapsules for self-healing materials[J]. Materials Chemistry and Physics, 2009, 118(1):63-70. [13] Pan X, York D, Preece J A, et al. Size and strength distributions of melamine-formaldehyde microcapsules prepared by membrane emulsification[J]. Powder Technology, 2012, 227:43-50. [14] Ghorbanzadeh Ahangari M, Fereidoon A, Jahanshahi M, et al. Effect of nanoparticles on the micromechanical and surface properties of poly(urea-formaldehyde) composite microcapsules[J]. Composites Part B:Engineering, 2014, 56:450-455. [15] 胡剑峰, 夏正斌, 司徒粤, 等. 脲醛树脂包覆双环戊二烯微胶囊的力学性能[J]. 化工学报, 2010, 61(10):2738-2742. [16] Liu T. Characterization of the mechanical properties of urea-formaldehyde microcapsules[J]. The Chinese Journal of Process Engineering, 2005, 5:450-454. [17] Keller M W, Sottos N R. Mechanical properties of microcapsules used in a self-healing polymer[J]. Experimental Mechanics, 2006, 46:725-733 [18] Wang C X, Pritchard J, Thomas C R. Investigation of the mechanics of single tomato fruit cells[J]. Journal of Texture Studies, 2006, 37:597-606. [19] Wan K T, Chan V, Dillard D A. Constitutive equation for elastic indentation of a thin-walled bio-mimetic microcapsule by an atomic force microscope tip[J]. Colloids and Surfaces B:Biointerfaces, 2003, 27:241-248. [20] Su J F, Wang X Y, Dong H. Micromechanical properties of melamine-formaldehyde microcapsules by nanoindentation:Effect of size and shell thickness[J] Materials Letters, 2012, 89:1-4. [21] Kurland N E, Drira Z, Yadavalli V K. Measurement of nanomechanical properties of biomolecules using atomic force microscopy[J]. Micron, 2012, 43(2-3):116-128. [22] Lulevich V V, Andrienko D, Vinogradova O I. Elasticity of polyelectrolyte multilayer microcapsules[J]. Journal of Chemical Physics, 2004, 120:3822-3826. [23] Mercadé-Prieto R, Nguyen B, Allen R, et al. Determination of the elastic properties of single microcapsules using micromanipulation and finite element modeling[J]. Chemical Engineering Science, 2011, 66(10):2042-2049. [24] Mercadé-Prieto R, Allen R, York D, et al. Compression of elastic-perfectly plastic microcapsules using micromanipulation and finite element modelling:Determination of the yield stress[J]. Chemical Engineering Science, 2011, 66(9):1835-1843. [25] Yamagishi Y, Sugeno T, Ishige T. Processing of the 13th Intersociety Energy Conversion Engineering Conference[C]//New York:American Nuclear Society, 1996. [26] 时雨荃, 蔡明健. 纳米复合膜相变微胶囊的制备及性质[J]. 化学工业与工程, 2006, 23(3):224-227. [27] Sarier Nihal, Onder Emel. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta, 2007, 452(2):149-160. [28] 范传杰. 脲醛树脂壁材微胶囊的制备及其性能研究[D]. 上海:华东理工大学, 2010. [29] Chen L, Wang T, Zhao Y, et al. Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCMS)[J]. Energy Conversion and Management, 2014, 79:317-333. [30] Jin Z G, Wang Y D, Liu J G, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer, 2008, 49(12):2903-2910. [31] Li W, Zhang X X, Wang X C, et al. Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage[J]. Energy, 2012, 38:249-254. [32] 刘丽. 相变微胶囊悬浮液自然对流换热/储热特性实验研究[D]. 北京:中国科学院研究生院工程热物理研究所, 2013. [33] 孟晓刚, 倪晋仁. 固液两相流中颗粒受力及其对垂向分选的影响[J]. 水利学报, 2002(9):6-13. [34] 贺征. 气粒热流场中微粒特性的动力学分析[D]. 哈尔滨:哈尔滨工程大学, 2009. [35] 王刚. 基于高阶离散格式的CFD与DEM耦合方法及其应用[D]. 长春:吉林大学, 2013.
|