[1] 史昕,邹劲松,厉荣. 炼油发展趋势对加氢能力及加氢技术的影响[J]. 当代石油石化,2014,22(9):1-5. SHI X,ZOU J S,LI R. The Influence of refining development trends upon hydrogenation capacity and hydrogenation technology[J]. Petroleum & Petrochemical Today,2014,22(9):1-5.
[2] PANG W W,KURAMAE M,KINOSHITA Y,et al. Plugging problems observed in severe hydrocracking of vacuum residue[J]. Fuel,2009,88(4):663-669.
[3] FAHIM M A,AL-SAHHAF T A,ELKILANI A,et al. Fundamentals of petroleum refining[M]. Amsterdam:Elsevier,2009.
[4] 李中华,肖武,阮雪华,等. 加氢裂化反应动力学建模研究进展[J]. 化工进展,2016,35(4):988-994. LI Z H,XIAO W,RUAN X H,et al. Research progress of hydrocracking reaction kinetic model[J]. Chemical Industry and Engineering Progress,2016,35(4):988-994.
[5] 方向晨,张英. 加氢裂化装置用能分析及节能途径探讨[J]. 化工进展,2008,27(1):151-156. FANG X C,ZHANG Y. Energy utilization analysis and energy-saving measures of hydrocracking units[J]. Chemical Industry and Engineering Progress,2008,27(1):151-156.
[6] 叶剑云. 加氢裂化装置工艺用能分析与优化[D]. 广州:华南理工大学,2010. YE J Y. Energy-use analysis and optimization of hydrocracking processes[D]. Guangzhou:South China University of Technology,2010.
[7] 白滨. 基于全流程模拟的加氢处理装置流程技改与操作调优[D]. 大连:大连理工大学,2015. BAI B. Technical innovation and operation optimization of hydrotreating unit based on whole process simulation[D]. Dalian:Dalian University of Technology,2015.
[8] 姚春峰. 金陵石化Ⅱ套加氢裂化装置流程模拟应用[J]. 中外能源,2014,19(2):74-78. YAO C F. Application of process simulation technology in Sinopec Jinling company's No.2 hydrocracking unit[J]. Sino-Global Energy,2014,19(2):74-78.
[9] 马晓明. 连续重整装置模拟与节能研究[D]. 青岛:青岛科技大学,2012. MA X M. The simulation and energy-saving research of continuous catalytic reforming unit[D]. Qingdao:Qingdao University of Science and Technology,2012.
[10] 汪旭,冯霄. 基于启发式方法的弹性换热网络的合成[J]. 计算机与应用化学,2010,27(10):1349-1352. WANG X,FENG X. Synthesis of flexible heat exchanger network based on heuristic approach[J]. Computers and Applied Chemistry,2010,27(10):1349-1352.
[11] KANG H,WANG T,ZHENG H. Comparative analysis of regenerative and air-extraction multi-stage humidification-dehumidification desalination system using pinch technology[J]. Desalination,2016,385:158-166.
[12] 杨慧,李述日. 有效能分析法的应用研究进展[J]. 广东化工,2014,41(15):114-115. YANG H,LI S R. The application progress of exergy analysis[J]. Guangdong Chemical Industry,2014,41(15):114-115.
[13] TORIO H,SCHMIDT D. Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis[J]. Energy & Buildings,2010,42(10):1601-1609.
[14] YE J,CHEN Q,ZHANG B. Exergy analysis and optimization for the high-pressure heat exchange network of a hydrocracking unit[J]. Petroleum Processing & Petrochemicals,2010,41(3):74-77.
[15] KANG L,LIU Y. Minimizing investment cost for multi-period heat exchanger network retrofit by matching heat transfer areas with different strategies[J]. Chinese Journal of Chemical Engineering,2015,23(7):1153-1160.
[16] SOUZA R D,KHANAM S,MOHANTY B. Synthesis of heat exchanger network considering pressure drop and layout of equipment exchanging heat[J]. Energy,2016,101:484-495.
[17] GADALLA M A. A new graphical method for Pinch Analysis applications:heat exchanger network retrofit and energy integration[J]. Energy,2015,81:159-174. |