化工进展 ›› 2020, Vol. 39 ›› Issue (S1): 133-140.DOI: 10.16085/j.issn.1000-6613.2019-1673
收稿日期:
2019-10-21
出版日期:
2020-05-20
发布日期:
2020-06-29
通讯作者:
龙湘云
作者简介:
羡策(1994—),男,硕士研究生,研究方向为加氢催化剂。E-mail:基金资助:
Ce XIAN(), Yichao MAO, Xiangyun LONG(), Ping YANG, Qinghe YANG
Received:
2019-10-21
Online:
2020-05-20
Published:
2020-06-29
Contact:
Xiangyun LONG
摘要:
催化柴油富含双环芳烃,可通过加氢裂化过程选择性多产高价值轻质芳烃(BTX)产物,现有研究已对此过程所需的工艺条件和催化剂性质进行了大量考察。工业应用中催化剂的酸性组分以Y型分子筛为主,研究分子筛性质和反应结果的关系成为重点内容。本文主要介绍了双环芳烃多产BTX产物经历加氢饱和、开环、断侧链等主要反应过程,金属组分及其与分子筛的协同作用;总结了Y型分子筛的性质如孔道性质、小晶粒、酸性质、核壳结构等因素对上述反应过程的影响。初步表明分子筛孔性质、酸性质直接影响目标反应选择性,通过对分子筛性质进行调变,可以达到促进反应物有效转化及提高BTX产物收率的目的。
中图分类号:
羡策, 毛以朝, 龙湘云, 杨平, 杨清河. Y型分子筛应用于双环芳烃加氢裂化多产轻芳烃过程研究进展[J]. 化工进展, 2020, 39(S1): 133-140.
Ce XIAN, Yichao MAO, Xiangyun LONG, Ping YANG, Qinghe YANG. Advances on the application of zeolite Y in the producing light aromatic hydrocarbons from dicyclic aromatics hydrocracking[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 133-140.
需控制的过程 | 控制程度 | 催化剂性质调变方向 |
---|---|---|
加氢反应过程 | 控制加氢深度,防止加氢过度饱和 | 合适的金属组分及配比,与分子筛协同作用良好 |
开环反应过程 | 促进双环芳烃开环后进一步断侧链 | 需要一定量的强酸位点,恰当的孔道性质利于传质 |
催化剂失活过程 | 防止大分子物质结焦,造成催化剂孔道堵塞 | 适当的酸强度与酸量、孔道性质,有助于大分子物质吸脱附及扩散 |
表2 需控制的过程及催化剂性质调变方向
需控制的过程 | 控制程度 | 催化剂性质调变方向 |
---|---|---|
加氢反应过程 | 控制加氢深度,防止加氢过度饱和 | 合适的金属组分及配比,与分子筛协同作用良好 |
开环反应过程 | 促进双环芳烃开环后进一步断侧链 | 需要一定量的强酸位点,恰当的孔道性质利于传质 |
催化剂失活过程 | 防止大分子物质结焦,造成催化剂孔道堵塞 | 适当的酸强度与酸量、孔道性质,有助于大分子物质吸脱附及扩散 |
项目 | 国Ⅵ柴油标准 | 广州石化 | 石家庄炼化 | 高桥石化 | 齐鲁石化 |
---|---|---|---|---|---|
十六烷值 | ≥51 | 15~30 | |||
链烷烃(质量分数)/% | — | 9.6 | 12.3 | 17.1 | 7.0 |
环烷烃(质量分数)/% | — | 8.8 | 5.2 | 10.6 | 3.1 |
单环芳烃(质量分数)/% | — | 28.5 | 25.8 | 20.3 | 29.0 |
双环芳烃(质量分数)/% | ≤7 | 42.1 | 44.4 | 41.9 | 52.0 |
三环芳烃(质量分数)/% | 11.0 | 12.6 | 10.1 | 8.9 |
表1 国Ⅵ柴油质量标准(部分)及典型炼厂LCO烃类组成
项目 | 国Ⅵ柴油标准 | 广州石化 | 石家庄炼化 | 高桥石化 | 齐鲁石化 |
---|---|---|---|---|---|
十六烷值 | ≥51 | 15~30 | |||
链烷烃(质量分数)/% | — | 9.6 | 12.3 | 17.1 | 7.0 |
环烷烃(质量分数)/% | — | 8.8 | 5.2 | 10.6 | 3.1 |
单环芳烃(质量分数)/% | — | 28.5 | 25.8 | 20.3 | 29.0 |
双环芳烃(质量分数)/% | ≤7 | 42.1 | 44.4 | 41.9 | 52.0 |
三环芳烃(质量分数)/% | 11.0 | 12.6 | 10.1 | 8.9 |
分子式 | a×b×c/nm | 分子式 | a×b×c/nm |
---|---|---|---|
0.341 | 0.391 | ||
0.341 | 0.380 | ||
0.542 | 0.390 |
表3 芳烃、环烷烃分子的尺寸(a×b为分子的最小截面尺寸)
分子式 | a×b×c/nm | 分子式 | a×b×c/nm |
---|---|---|---|
0.341 | 0.391 | ||
0.341 | 0.380 | ||
0.542 | 0.390 |
催化剂类型 | 孔体积/cm3·g-1 | 四氢萘转化率/% | 产物分布(质量分数)/% | |||
---|---|---|---|---|---|---|
微孔 | 介孔 | 气体产物 | 单环产物 | 十氢萘 | ||
NiMo/HY(TO) | 0.21 | 0.125 | 49.4 | 2.3 | 26.2 | 3.5 |
NiMo/HY(CE) | 0.20 | 0.054 | 44.9 | 2.2 | 25.1 | 3.8 |
表4 介孔体积对开环产物收率的影响[41]
催化剂类型 | 孔体积/cm3·g-1 | 四氢萘转化率/% | 产物分布(质量分数)/% | |||
---|---|---|---|---|---|---|
微孔 | 介孔 | 气体产物 | 单环产物 | 十氢萘 | ||
NiMo/HY(TO) | 0.21 | 0.125 | 49.4 | 2.3 | 26.2 | 3.5 |
NiMo/HY(CE) | 0.20 | 0.054 | 44.9 | 2.2 | 25.1 | 3.8 |
Si/Al | 孔结构 | 加氢裂化性能 | |||
---|---|---|---|---|---|
总的比表面积/m2·g-1 | 总的孔体积/cm3·g-1 | 转化率/% | 轻馏分选择性/% | 石化产品原料收率(质量分数)/% | |
工业剂 | 571.7 | 0.33 | 73.2 | 70.6 | 75.2 |
4.7 | 681.3 | 0.44 | 85.5 | 68.8 | 70.5 |
4.9 | 711.6 | 0.44 | 81.2 | 71.5 | 71.8 |
5.2 | 701.2 | 0.42 | 80.1 | 75.9 | 80.2 |
5.4 | 599.9 | 0.32 | 79.2 | 70.4 | 80.3 |
6.2 | 595.8 | 0.41 | 74.8 | 71.1 | 80.2 |
表5 不同硅铝比的小晶粒Y分子筛孔结构及加氢裂化性能[49]
Si/Al | 孔结构 | 加氢裂化性能 | |||
---|---|---|---|---|---|
总的比表面积/m2·g-1 | 总的孔体积/cm3·g-1 | 转化率/% | 轻馏分选择性/% | 石化产品原料收率(质量分数)/% | |
工业剂 | 571.7 | 0.33 | 73.2 | 70.6 | 75.2 |
4.7 | 681.3 | 0.44 | 85.5 | 68.8 | 70.5 |
4.9 | 711.6 | 0.44 | 81.2 | 71.5 | 71.8 |
5.2 | 701.2 | 0.42 | 80.1 | 75.9 | 80.2 |
5.4 | 599.9 | 0.32 | 79.2 | 70.4 | 80.3 |
6.2 | 595.8 | 0.41 | 74.8 | 71.1 | 80.2 |
催化剂类型 | 反应前酸量/ | 反应后酸量/ | ||||||
---|---|---|---|---|---|---|---|---|
总酸量 | 弱酸量 | 中强酸量 | 强酸量 | 总酸量 | 弱酸量 | 中强酸量 | 强酸量 | |
Pt/Y12 | 498 | 154 | 326 | 18 | 386 | 242 | 143 | 1 |
Pd/Y12 | 600 | 182 | 305 | 113 | 279 | 170 | 107 | 2 |
Pt-Pd/Y12 | 550 | 90 | 385 | 75 | 357 | 204 | 151 | 2 |
Pt/Y5 | 678 | 255 | 259 | 164 | 551 | 294 | 240 | 17 |
Pd/Y5 | 803 | 251 | 334 | 218 | 557 | 317 | 243 | 17 |
Pt-Pd/Y5 | 686 | 311 | 252 | 123 | 605 | 336 | 249 | 20 |
表6 反应前后催化剂酸量[51]
催化剂类型 | 反应前酸量/ | 反应后酸量/ | ||||||
---|---|---|---|---|---|---|---|---|
总酸量 | 弱酸量 | 中强酸量 | 强酸量 | 总酸量 | 弱酸量 | 中强酸量 | 强酸量 | |
Pt/Y12 | 498 | 154 | 326 | 18 | 386 | 242 | 143 | 1 |
Pd/Y12 | 600 | 182 | 305 | 113 | 279 | 170 | 107 | 2 |
Pt-Pd/Y12 | 550 | 90 | 385 | 75 | 357 | 204 | 151 | 2 |
Pt/Y5 | 678 | 255 | 259 | 164 | 551 | 294 | 240 | 17 |
Pd/Y5 | 803 | 251 | 334 | 218 | 557 | 317 | 243 | 17 |
Pt-Pd/Y5 | 686 | 311 | 252 | 123 | 605 | 336 | 249 | 20 |
催化剂类型 | 酸量 / | 四氢萘转化率(摩尔分数)/% | 产物收率(摩尔分数)/% | |||
---|---|---|---|---|---|---|
芳烃产物 | 加氢产物 | 开环产物 | 裂化产物 | |||
NiMo/Alu | 471 | 18.8 | 1.6 | 17.2 | 0.9 | 0.5 |
NiMo/SiAl | 554 | 27.8 | 7.1 | 20.7 | 7.7 | 1.9 |
NiMo/AluZ | 695 | 53.3 | 20.1 | 33.3 | 30.5 | 17.7 |
表7 酸量对产物分布影响[53]
催化剂类型 | 酸量 / | 四氢萘转化率(摩尔分数)/% | 产物收率(摩尔分数)/% | |||
---|---|---|---|---|---|---|
芳烃产物 | 加氢产物 | 开环产物 | 裂化产物 | |||
NiMo/Alu | 471 | 18.8 | 1.6 | 17.2 | 0.9 | 0.5 |
NiMo/SiAl | 554 | 27.8 | 7.1 | 20.7 | 7.7 | 1.9 |
NiMo/AluZ | 695 | 53.3 | 20.1 | 33.3 | 30.5 | 17.7 |
催化剂类型 | 催化剂制作方法 | 产物分布(质量分数)/% | ||||
---|---|---|---|---|---|---|
苯 | 甲苯 | 乙苯 | 对二甲苯 | 其他烷基苯 | ||
NMAZ | Al2O3与USY分子筛物理混合 | 6.89 | 2.03 | 14.33 | 14.89 | 35.00 |
NMACZ | Al2O3包裹在USY分子筛表面 | 7.81 | 2.63 | 17.26 | 16.90 | 35.32 |
表8 核壳结构分子筛对产物分布的影响[58,59]
催化剂类型 | 催化剂制作方法 | 产物分布(质量分数)/% | ||||
---|---|---|---|---|---|---|
苯 | 甲苯 | 乙苯 | 对二甲苯 | 其他烷基苯 | ||
NMAZ | Al2O3与USY分子筛物理混合 | 6.89 | 2.03 | 14.33 | 14.89 | 35.00 |
NMACZ | Al2O3包裹在USY分子筛表面 | 7.81 | 2.63 | 17.26 | 16.90 | 35.32 |
1 | 戴厚良. 芳烃生产技术展望[J]. 石油炼制与化工, 2013, 44(1): 1-10. |
DAI H L. Outlook of aromatics production technology[J]. Petroleum Processing and Petrochemicals, 2013, 44(1): 1-10. | |
2 | 鲁旭, 赵秦峰, 兰玲. 催化裂化轻循环油(LCO)加氢处理多产高辛烷值汽油技术研究进展[J]. 化工进展, 2017, 36(1):114-120. |
LU X, ZHAO Q F, LAN L. Research process on producing more high octane gasoline through hydrogenation from FCC light cycle oil (LCO)[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 114-120. | |
3 | 李大东. 炼油工业:市场的变化与技术对策[J]. 石油学报(石油加工), 2015, 31(2): 208-217. |
LI D D. Petroleum industry:market changes and technical strategy[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(2): 208-217. | |
4 | 臧甲忠, 郭春垒, 范景新, 等. C9+重芳烃增产BTX技术进展[J]. 化工进展, 2017, 36(4): 1278-1287. |
ZANG J Z, GUO C L, FAN J X, et al. Advance in BTX production increase technology from C9+heavy aromatics[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1278-1287. | |
5 | 孙士可, 曾榕辉, 吴子明. FD2G催化裂化柴油加氢转化技术工业应用总结[J]. 炼油技术与工程, 2019, 49(7): 16-19. |
SUN S K, ZENG R H, WU Z M. Summary of industrial application of FD2G technology[J]. Petroleum Refinery Engineering, 2019, 49(7): 16-19. | |
6 | SHIN J, OH Y, CHOI Y, et al. Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons[J]. Applied Catalysis A:General, 2017, 547: 12-21. |
7 | WU T, CHEN S L, YUAN G M, et al. High-selective-hydrogenation activity of W/Beta catalyst in hydrocracking of 1-methylnaphalene to benzene, toluene and xylene[J]. Fuel, 2018, 234: 1015-1025. |
8 | YUN G N, LEE Y K. Dispersion effects of Ni2P catalysts on hydrotreating of light cycle oil[J]. Applied Catalysis B:Environmental, 2014, 150/151: 647-655. |
9 | 刘永存, 肖寒, 王帅, 等. Ni-Mo-P/Beta-ZSM-5催化剂对四氢萘加氢裂化性能的研究[J]. 无机盐工业, 2018, 50(6): 81-85. |
LIU Y C, XIAO H, WANG S, et al. Study on hydrocracking performance of tetralin over Ni-Mo-P/Beta-ZSM-5 catalyst[J]. Inorganic Chemicals Industry, 2018, 50(6): 81-85. | |
10 | 杜艳泽. 工业Y沸石孔结构和酸性的调控及其加氢裂化性能研究[D]. 太原: 太原理工大学, 2019. |
DU Y Z. Regulation of pore structure and acidity of industrial zeolite of Y and its performance in hydrocracking[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
11 | 覃正兴, 申宝剑. 水热处理过程中Y分子筛的骨架脱铝、补硅及二次孔的形成[J]. 化工学报, 2016, 67(8): 3160-3169. |
QIN Z X, SHEN B J. Dealumination, silicon reinsertion, and secondary pore formation in steaming of zeolite Y[J]. CIESC Journal, 2016, 67(8): 3160-3169. | |
12 | 辛靖,杨平,董松涛,等. 加氢裂化催化剂及其制备方法和加氢裂化反应的方法: CN105457671B[P]. 2017-12-22. |
13 | 柳伟,杜艳泽,秦波,等. 一种加氢裂化催化剂级配方法及催化柴油加氢转化工艺: CN106669787B[P]. 2019-03-19. |
14 | 辛靖,杨平,张毓莹,等. 加氢裂化催化剂及其制备方法和加氢裂化反应的方法: CN105413741B[P]. 2018-05-18. |
15 | 刘永存, 肖寒, 张景成, 等. 分子筛类型对四氢萘加氢裂化反应性能的影响[J]. 石油炼制与化工, 2017, 48(11): 28-34. |
LIU Y C, XIAO H, ZHANG J C, et al. Influence of zeolite type on hydrocracking reaction of tetralin[J]. Petroleum Processing and Petrochemicals, 2017, 48(11): 28-34 | |
16 | 吴丽芳, 祝伟, 张新堂. 双组分金属类型对四氢萘加氢裂化反应性能的影响[J]. 工业催化, 2018, 26(3): 54-60. |
WU L F, ZHU W, ZHANG X T. Effect of the type of two-metal components on the performance of hydrocracking reaction of tetralin[J]. Industrial Catalysis, 2018, 26(3): 54-60. | |
17 | 陈俊森, 彭冲, 方向晨, 等. NiMo/HY催化剂上四氢萘加氢裂化反应网络与热力学平衡分析[J]. 化工学报, 2018, 69(2): 709-717. |
CHEN J S, PENG C, FANG X C, et al. Reaction network and thermodynamic equilibrium for tetralin hydrocracking over NiMo/HY catalyst[J]. CIESC Journal, 2018, 69(2): 709-717. | |
18 | SATO K, IWATA Y, YONEDA T, et al. Hydrocracking of diphenylmethane and tetralin over bifunctional NiW sulfide catalysts supported on three kinds of zeolites[J]. Catalysis Today, 1998, 45: 367-374. |
19 | SATO K, IWATA Y, MIKI Y, et al. Hydrocracking of tetralin over NiW/USY zeolite catalysts:for the improvement of Heavy-Oil upgrading catalysts[J]. Journal of Catalysis, 1999, 186: 45-56. |
20 | MCVICKER G B, DAAGE M, TOUVELLE M S, et al. Selective ring opening of naphthenic molecules[J]. Journal of Catalysis, 2002, 210(1): 137-148. |
21 | STUMBO A M, GRANGE P, DELMON B. Effect of spillover hydrogen on amorphous hydrocracking catalysts[J]. Studies in Surface Science and catalysis, 1996, 101: 97-106. |
22 | HERNÁNDEZ-HUESCA R, MÉRIDA-ROBLES J, MAIRELES-TORRES P, et al. Hydrogenation and ring-opening of tetralin on Ni and NiMo supported on alumina-pillared α-Zirconium phosphate catalysts. A thiotolerance study[J]. Journal of Catalysis, 2001, 203(1): 122-132. |
23 | CALEMMA V, GIARDINO R, FERRARI M. Upgrading of LCO by partial hydrogenation of aromatics and ring opening of naphthenes over bi-functional catalysts[J]. Fuel Processing Technology, 2010, 91(1): 770-776. |
24 | ARDAKANI S J, SMITH K J. A comparative study of ring opening of naphthalene, tetralin and decalin over Mo2C/HY and Pd/HY catalysts[J]. Applied Catalysis A: General, 2011, 403: 36-47. |
25 | CHOI Y, LEE J H, SHIN J, et al. Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons[J]. Applied Catalysis A: General, 2015, 495: 140-150. |
26 | ARRIBAS M A, MARTINEZ A, SATSTRE G. Simultaneous hydrogenation and ring opening of aromatics for diesel upgrading on Pt/zeolite catalysts. The influence of zeolite pore topology and reactant on catalyst performance[J]. Studies in Surface Science and Catalysis, 2002, 142: 1015-1022. |
27 | ARRIBAS M A, CORMA A, DIAZ-CABANAS M J, et al. Hydrogenation and ring opening of tetralin over bifunctional catalysts based on the new ITQ-21 zeolite[J]. Applied Catalysis A: General, 2004, 273: 277-286. |
28 | GALADIMA A, MURAZA O. Ring opening of hydrocarbons for diesel and aromatics production: design of heterogeneous catalytic systems[J]. Fuel, 2016, 181: 618-629. |
29 | CAO Z B, XU X L, QI Y T, et al. Hydrocracking of tetralin over two modified zeolite Y based molybdenum-nickel dual functional catalysts[J]. Journal of Fuel Chemistry and Technology, 2001, 29: 12-18. |
30 | CORMA A, MIGUEL P J, ORCHILLES A V, et al. Cracking of long-chain alkyl aromatics on USY zeolite catalysts[J]. Journal of Catalysis, 1992, 135(1): 45-59. |
31 | 耿秋月, 袁帅, 严加松. 丁基苯在不同分子筛催化剂上的催化裂化规律[J]. 石油化工,2019, 48(8): 787-792. |
GENG Q Y, YUAN S, YAN J S. Catalytic cracking of butylbenzene on different zeolite catalysts[J]. Petrochemical Technology, 2019, 48(8): 787-792. | |
32 | TOPPI S, THOMAS C, SAYAG C, et al. Kinetics and mechanisms of n-propylbenzene hydrodealkylation reactions over Pt(Sn)/SiO2 and (Cl-)Al2O3 catalysts in reforming conditions[J]. Journal of Catalysis, 2002, 210: 431-444. |
33 | LI W, WANG Z Q, ZHANG M H, et al. Novel Ni2Mo3N/zeolite catalysts used for aromatics hydrogenation as well as polycyclic hydrocarbon ring opening[J]. Catalysis Communications, 2005, 6: 656-660. |
34 | DING L H, ZHENG Y, ZHANG Z S, et al. Hydrotreating of light cycled oil using WNi/Al2O3 catalysts containing zeolite beta and/or chemically treated zeolite Y[J]. Journal of Catalysis, 2006, 241: 435-445. |
35 | BREYSSE M, CATTENOT M, KOUGIONAS V, et al. Hydrogenation properties of ruthenium sulfide clusters in acidic zeolites[J]. Journal of Catalysis, 1997, 168: 143-153. |
36 | ARRIBAS M A, CONCEPCION P, MARTINEZ A. The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts[J]. Applied Catalysis A: General, 2004, 267: 111-119. |
37 | LEMBERTON J L, TOUZEYIDIO M, GUISNET M. Catalytic hydroconversion of simulated coal tars: Ⅲ. Activity of sulphided NiMo on alumina-zeolite catalysts for the hydroconversion of model compounds[J]. Applied Catalysis A: General, 1991,79: 115-126. |
38 | 陈振涛, 徐春明. 重质油在孔道内扩散传质的研究进展[J]. 化工学报,2016, 67(1): 165-175. |
CHEN Zhentao, XU Chunming. Process of research on diffusional transport of heavy oil in pores[J]. CIESC Journal, 2016, 67(1): 165-175. | |
39 | 袁帅,龙军,周涵,等. 芳烃、环烷烃分子在MFI和FAU分子筛中扩散行为的分子模拟[J]. 石油学报(石油加工),2011, 27(4): 508-515. |
YUAN S, LONG J, ZHOU H, et al. Molecular simulation for the diffusion characteristics of aromatic and naphthenic hydrocarbons in the channel of MFI and FAU zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(4): 508-515. | |
40 | 杨平, 庄立, 李明丰, 等. 多级孔分子筛对四氢萘加氢生产轻质芳烃的影响[J]. 工业催化, 2018, 26(7): 60-66. |
YANG P, ZHUANG L, LI M F, et al. Seletive hydrocracking of tetralin to light aromatic hydrocarbons over hierarchical zeolites[J]. Industrial Catalysis, 2018, 26(7): 60-66. | |
41 | SATO K, NISHIMURA Y, HONNA K, et al. Role of HY zeolite mesopores in hydrocracking of heavy oils[J]. Journal of Catalysis, 2001, 200: 288-297. |
42 | REN S Y, MENG B, SUI X, et al. Preparation of mesoporous zeolite Y by fluorine-alkaline treatment for hydrocracking reaction of naphthalene[J]. Industrial and Engineering Chemistry Research, 2019, 58: 7886-7891. |
43 | CORMA A, GONZÁLEZ-ALFARO V, ORCHILLÉS A V. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil[J]. Journal of Catalysis, 2001, 200: 34-44. |
44 | 袁晓亮, 王燕, 张占全, 等. 小晶粒Y分子筛的合成及其加氢裂化性能[J]. 石油学报(石油加工), 2018, 34(5): 1028-1032. |
YUAN X L, WANG Y, ZHANG Z Q, et al. Hydrocracking performance and synthesis of small crystal Y zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(5): 1028-1032. | |
45 | 刘丽杰, 胡云峰, 舒静. 高硅铝比小晶粒分子筛的合成及应用进展[J]. 工业催化,2014,22(6): 405-411. |
LIU L J, HU Y F, SHU J. Progress in synthesis and application of nanosized zeolites with high silica-alumina ratio[J]. Industrial catalysis, 2014,22(6): 405-411. | |
46 | 魏麟骄. 高硅铝比Y型分子筛的制备及加氢裂化性能研究[D]. 青岛: 中国石油大学(华东), 2016. |
WEI L J. Preparation and hydrocracking performance of Y zeolite with high Si/Al ratio[D]. Qingdao: China University of Petroleum (East China), 2016. | |
47 | 李全升. 高硅铝比小晶粒NaY分子筛改性及反应性能评价[D]. 大连: 大连理工大学, 2015. |
LI Q S. Modification and catalytic performance evaluation of small-size NaY zeolite with high silicon aluminium ratio[D]. Dalian: Dalian University of Technology, 2015. | |
48 | CUI Q Y, ZHOU Y S, WEI Q, et al. Role of the zeolite crystallite size on hydrocracking of vacuum gas oil over NiW/Y-ASA catalysts[J]. Energy Fuels, 2012, 26(8): 4664-4670. |
49 | 秦臻, 周亚松, 魏强, 等. 不同硅铝比的小晶粒Y分子筛的理化性质及其加氢裂化性能[J]. 石油化工, 2013, 42(10): 1080-1085. |
QIN Z, ZHOU Y S, WEI Q, et al. Physicochemical properties and hydrocracking performance of nano-crystal Y Zeolites with different silica-alumina ratio[J]. Petrochemical Technology, 2013, 42(10): 1080-1085. | |
50 | 杨哲, 宗士猛, 龙军. 四氢萘微观结构的量子化学研究[J]. 计算机与应用化学, 2012, 29(4): 465-468. |
YANG Z, ZONG S M, LONG J. Quantum mechanical studies on the micro-structure of tetrahydro-naphthalene[J]. Computers and Applied Chemistry, 2012, 29(4): 465-468. | |
51 | GUTIÉRREZ A, ARANDES J M, CASTAÑO P, et al. Role of acidity in the deactivation and steady hydroconversion of light cycle oil on noble metal supported catalysts[J]. Energy Fuels, 2011, 25(8): 3389-3399. |
52 | 鞠雪艳, 胡志海, 蒋东红, 等. 金属与分子筛含量对预加氢1-甲基萘的加氢裂化催化剂的影响[J]. 石油学报(石油加工), 2012, 28(5): 711-716. |
JU X Y, HU Z H, JIANG D H, et al. Effect of metal and zeolite mass fractions on the hydrocracking catalyst of prehydrotreated 1-methyl naphthalene[J]. Acta Petrolei sinica (Petroleum processing section), 2012, 28(5): 711-716. | |
53 | FERRAZ S G A, ZANON ZOTIN F M, RADDI ARAUJO L R, et al. Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin[J]. Applied Catalysis A: General, 2010, 384: 51-57. |
54 | ARRIBAS M A, MARTÍNEZ A. The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts[J]. Applied Catalysis A: General, 2002, 230: 203-217. |
55 | 徐婷婷, 孙维, 金学庆, 等. 核壳结构材料的制备及在环境催化方面应用的研究进展[J]. 精细石油化工进展, 2019, 20(1): 53-57. |
XU T T, SUN W, JIN X Q, et al. Progress of research on preparation of core-shell structural materials and application in environmental catalysis[J]. Advances in Fine Petrochemicals, 2019, 20(1): 53-57. | |
56 | 王博. 多级孔金属-分子筛核壳材料的制备及其催化性能研究[D]. 上海: 华东师范大学, 2018. |
WANG B. Synthesis and catalytic performance of hierarchical metal-zeolite core-shell materials[D]. Shanghai: East China Normal University, 2018. | |
57 | 任博. 核壳结构Y/Beta复合分子筛合成、表征及催化性能研究[D]. 北京: 北京工业大学, 2014. |
REN B. Synthesis, characterization and catalytic performance of the Y/Beta composite zeolites with core-shell structure[D]. Beijing: Beijing University of Technology, 2014. | |
58 | PARK J I, ALI S A, ALHOOSHANI K, et al. Mild hydrocracking of 1-methyl naphthalene (1-MN) over alumina modified zeolite[J]. Journal of Industrial and Engineering Chemistry, 2013,19: 627-632. |
59 | PARK J I, LEE J K, MIYAWAKI J, et al. Hydro-conversion of |
1-methyl naphthalene into (alkyl)benzenes over alumina-coated USY zeolite-supported NiMoS catalysts[J]. Fuel, 2011, 90: 182-189. |
[1] | 孔倩, 孙巾超, 葛佳琪, 张鹏, 马艳龙, 刘百军. 沉淀剂对NiW/TiO2-ASA催化剂加氢裂化性能的影响[J]. 化工进展, 2023, 42(1): 265-271. |
[2] | 韩京京, 谭涓, 刘靖, 刘宇. 小晶粒ZSM-22的可控合成及其催化长链正构生物烷烃制航空煤油性能[J]. 化工进展, 2022, 41(4): 1916-1924. |
[3] | 葛佳琪, 谢方明, 刘思危, 马艳龙, 李海岩, 田宏宇, 孙发民, 刘百军. 浸渍方法对Ni-W/Y-ASA催化剂加氢裂化性能的影响[J]. 化工进展, 2021, 40(6): 3191-3196. |
[4] | 杜艳泽, 秦波, 王会刚, 郝文月, 高杭, 方向晨. 多级孔分子筛在重油加氢裂化催化剂的应用进展[J]. 化工进展, 2021, 40(4): 1859-1867. |
[5] | 刘宇, 谭涓, 刘靖, 王慧风. Pt/ZSM-35催化长链正构生物烷烃加氢裂化/异构化制航空煤油[J]. 化工进展, 2020, 39(12): 5086-5094. |
[6] | 宋昌才, 邓中活, 牛传峰. 重油生产低碳烯烃等化工品技术研究进展[J]. 化工进展, 2019, 38(s1): 86-94. |
[7] | 韩琪, 李海岩, 杨英, 刘百军. 超稳Y型分子筛的骨架硅铝比对甘油气相脱水反应的影响[J]. 化工进展, 2019, 38(06): 2791-2795. |
[8] | 崔莎, 葛佳琪, 王更更, 杨英, 刘百军. 薄片状Y型分子筛的合成及其裂化性能[J]. 化工进展, 2018, 37(02): 576-580. |
[9] | 黄汤舜, 王子军, 张书红, 刘必心, 郭鑫. 重油加氢裂化过程动力学模型的研究进展[J]. 化工进展, 2017, 36(S1): 149-154. |
[10] | 李中华, 肖武, 贺高红, 杜艳泽, 方向晨, 罗立. 夹点技术优化改造蜡油加氢裂化装置换热网络及有效能分析[J]. 化工进展, 2017, 36(04): 1231-1239. |
[11] | 任文坡, 李振宇, 李雪静, 金羽豪. 渣油深度加氢裂化技术应用现状及新进展[J]. 化工进展, 2016, 35(08): 2309-2316. |
[12] | 杨旭, 汪坤, 肖翔, 周靖, 史彬, 鄢烈祥. 基于粗糙集的智能可视化优化方法用于加氢裂化反应操作优化[J]. 化工进展, 2016, 35(03): 722-726. |
[13] | 胡心悦, 陈平, 刘学军, 陆磊刚, 张海燕, 卢美贞, 于凤文, 计建炳. 正构生物烷烃在Pt/ZSM-5催化剂上选择性加氢裂化制备液体生物燃料[J]. 化工进展, 2015, 34(04): 1007-1013. |
[14] | 杜艳泽,张晓萍,关明华,方向晨. 国内馏分油加氢裂化技术应用现状和发展趋势[J]. 化工进展, 2013, 32(10): 2523-2528. |
[15] | 黄 新 露. 重芳烃高效转化生产轻芳烃技术[J]. 化工进展, 2013, 32(09): 2263-2266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |