化工进展 ›› 2017, Vol. 36 ›› Issue (04): 1448-1459.DOI: 10.16085/j.issn.1000-6613.2017.04.039
张婧, 张铁, 孙峰, 徐伟, 石宁
收稿日期:
2016-08-10
修回日期:
2016-12-21
出版日期:
2017-04-05
发布日期:
2017-04-05
通讯作者:
张婧
作者简介:
张婧(1986-),女,博士,博士后,主要从事等离子体化学及等离子体-催化化学反应研究。E-mail:jingdlut@foxmail.com。
基金资助:
ZHANG Jing, ZHANG Tie, SUN Feng, XU Wei, SHI Ning
Received:
2016-08-10
Revised:
2016-12-21
Online:
2017-04-05
Published:
2017-04-05
摘要: 硫化氢直接分解制取氢气和硫黄,不仅可以使石油、天然气、煤和矿产加工等生产过程中产生的硫化氢得到有效治理、解决环境污染问题,还能在回收硫黄的同时获得清洁能源——氢能。本文综述了热分解(直接热分解、催化热分解、超绝热分解)、电化学分解、光催化分解以及等离子体分解等硫化氢直接分解制取氢气和硫黄技术,对各种方法的基本原理、热力学依据进行了简要介绍,并详细阐述了各种技术的国内外研究现状,从研究方法、技术特点、反应性能、优缺点以及这些技术未来研究的可能突破点等方面展开深入分析。最后对硫化氢直接分解制氢技术的发展方向进行了展望,指出将膜技术、催化技术及等离子体技术相结合,不断发展和探索新技术将是硫化氢分解制氢技术的未来发展趋势。
中图分类号:
张婧, 张铁, 孙峰, 徐伟, 石宁. 硫化氢直接分解制取氢气和硫黄研究进展[J]. 化工进展, 2017, 36(04): 1448-1459.
ZHANG Jing, ZHANG Tie, SUN Feng, XU Wei, SHI Ning. Research progress on hydrogen and sulfur production from direct decomposition of hydrogen sulfide[J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1448-1459.
[1] AL-SHAMMA L,NAMAN S. The production and separation of hydrogen and sulfur from thermal decomposition of hydrogen sulfide over vanadium oxide/sulfide catalysts[J]. Int. J. Hydrogen Energy,1990,15(1):1-5. [2] AKAMATSU K,NAKANE M,SUGAWARA T,et al. Development of a membrane reactor for decomposing hydrogen sulfide into hydrogen using a high-performance amorphous silica membrane[J]. Journal of Membrane Science,2008,325(1):16-19. [3] GULDAL N,FIGEN H,BAYKARA S. New catalysts for hydrogen production from H2S:preliminary results[J]. Int. J. Hydrogen Energy,2015,40(24):7452-7458. [4] MIZUTA S,KONDO W,FUJII K,et al. Hydrogen production from hydrogen sulfide by the iron-chlorine hybrid process[J]. Industrial & Engineering Chemistry Research,1991,30(7):1601-1608. [5] ANANI A,MAO Z,WHITE R E,et al. Electrochemical production of hydrogen and sulfur by low-temperature decomposition of hydrogen sulfide in an aqueous alkaline solution[J]. Journal of the Electrochemical Society,1990,137(9):2703-2709. [6] KALINA D,MAAS JR E T. Indirect hydrogen sulfide conversion——Ⅰ. An acidic electrochemical process[J]. Int. J. Hydrogen Energy,1985,10(3):157-162. [7] KALE B,BAEG J O,YOO J S,et al. Synthesis of a novel photocatalyst,ZnBiVO4,for the photodecomposition of H2S[J]. Canadian Journal of Chemistry,2005,83(6/7):527-532. [8] YAN H,YANG J,MA G,et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis,2009,266(2):165-168. [9] BAI X F,CAO Y,WU W. Photocatalytic decomposition of H2S to produce H2 over CdS nanoparticles formed in HY-zeolite pore[J]. Renewable Energy,2011,36(10):2589-2592. [10] ZONG X,HAN J,SEGER B,et al. An integrated photoelectrochemical-chemical loop for solar-driven overall splitting of hydrogen sulfide[J]. Angewandte Chemie International Edition,2014,53(17):4399-4403. [11] ZHAO G B,JOHN S,ZHANG J J,et al. Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor[J]. Chemical Engineering Science,2007,62(8):2216-2227. [12] SUBRAHMANYA M C,RENKEN A,KIWI MINSKER L. Non-thermal plasma catalytic reactor for hydrogen production by direct decomposition of H2S[J]. Journal of Optoelectronics and Advanced Materials,2008,10(8):1991-1993. [13] JOHN S,HAMANN J C,MUKNAHALLIPATNA S S,et al. Energy efficiency of hydrogen sulfide decomposition in a pulsed corona discharge reactor[J]. Chemical Engineering Science,2009,64(23):4826-4834. [14] NUNNALLY T,GUTSOL K,RABINOVICH A,et al. Dissociation of H2S in non-equilibrium gliding arc "tornado" discharge[J]. Int. J. Hydrogen Energy,2009,34(18):7618-7625. [15] LINGA REDDY E,KARUPPIAH J,BIJU V,et al. Catalytic packed bed non-thermal plasma reactor for the extraction of hydrogen from hydrogen sulfide[J]. International Journal of Energy Research,2013,37(11):1280-1286. [16] ZHAO L,WANG Y,SUN Z,et al. Synthesis of highly dispersed metal sulfide catalysts via low temperature sulfidation in dielectric barrier discharge plasma[J]. Green Chemistry,2014,16(5):2619-2626. [17] REDDY E L,BIJU V,SUBRAHMANYAM C. Hydrogen production from hydrogen sulfide in a packed-bed DBD reactor[J]. Int. J. Hydrogen Energy,2012,37(10):8217-8222. [18] SLIMANE R B,LAU F S,DIHU R J,et al. Production of hydrogen by superadiabatic decomposition of hydrogen sulfide[C]//proceedings of the Proc 14th World Hydrogen Energy Conference,US:NREL,2002:1-15. [19] FARAJI F,SAFARIK I,STRAUSZ O P,et al. The direct conversion of hydrogen sulfide to hydrogen and sulfur[J]. Int. J. Hydrogen Energy,1998,23(6):451-456. [20] FUKUDA K,DOKIYA M,KAMEYAMA T,et al. Catalytic decomposition of hydrogen sulfide[J]. Industrial & Engineering Chemistry Fundamentals,1978,17(4):243-248. [21] KAMEYAMA T,DOKIYA M,FUKUDA K,et al. Differential permeation of hydrogen sulfide through a microporous Vycor-type glass membrane in the separation system of hydrogen and hydrogen sulfide[J]. Separation Science and Technology,1979,14(10):953-957. [22] KAMEYAMA T,FUKUDA K,FUJISHIGE M,et al. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes[J]. Hydrogen Energy Progress,1981,1:569-579. [23] KAMEYAMA T,DOKIYA M,FUJISHIGE M,et al. Possibility for effective production of hydrogen from hydrogen sulfide by means of a porous Vycor glass membrane[J]. Industrial & Engineering Chemistry Fundamentals,1981,20(1):97-99. [24] KAMEYAMA T,DOKIYA M,FUJISHIGE M,et al. Production of hydrogen from hydrogen sulfide by means of selective diffusion membranes[J]. Int. J. Hydrogen Energy,1983,8(1):5-13. [25] EDLUND D J,PLEDGER W A. Thermolysis of hydrogen sulfide in a metal-membrane reactor[J]. Journal of Membrane Science,1993,77(2/3):255-264. [26] 张谊华,滕玉美. 硫化铁催化剂的制备,表征及对H2S制H2反应的研究[J]. 华东理工大学学报(自然科学版),1995,21(6):738-742. ZHANG Y H,TENG Y M. The preparation and characterization of iron sulfide catalyst and it's reactivity for thermochemical decomposition of H2S to H2[J]. Journal of East China University of Science and Technology,1995,21(6):738-742. [27] RESHETENKO T,KHAIRULIN S,ISMAGILOV Z,et al. Study of the reaction of high-temperature H2S decomposition on metal oxides(γ-Al2O3,α-Fe2O3,V2O5)[J]. Int. J. Hydrogen Energy,2002,27(4):387-394. [28] RICARDO B V. Catalytic membrane reactor that is used for the decomposition of hydrogen sulphide into hydrogen and sulphur and the separation of the products of said decomposition:EP 1411029[P]. 2004-04-21. [29] STARTSEV A. Low-temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur[J]. Kinet Catal.,2016,57(4):511-522. [30] STARTSEV A,KRUGLYAKOVA O,CHESALOV Y A,et al. Low temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur[J]. Top. Catal.,2013,56(11):969-980. [31] STARTSEV A N,KRUGLYAKOVA O V. Diatomic gaseous sulfur obtained at low temperature catalytic decomposition of hydrogen sulfide[J]. Journal of Chemistry and Chemical Engineering,2013,7(11):1007-1013. [32] STARTSEV A,KRUGLYAKOVA O,CHESALOV Y A,et al. Low-temperature catalytic decomposition of hydrogen sulfide on metal catalysts under layer of solvent[J]. Journal of Sulfur Chemistry,2016,37(2):229-240. [33] BINGUE J P,SAVELIEV A V,FRIDMAN A,et al. Hydrogen sulfide filtration combustion:comparison of theory and experiment[J]. Experimental Thermal and Fluid Science,2002,26(2):409-415. [34] SLIMANE R,LAU F,KHINKIS M,et al. Conversion of hydrogen sulfide to hydrogen by superadiabatic partial oxidation:thermodynamic consideration[J]. Int. J. Hydrogen Energy,2004,29(14):1471-1477. [35] 凌忠钱,周昊,钱欣平,等. 多孔介质内H2S贫氧燃烧制氢数值模拟[J]. 环境科学学报,2006,26(1):22-26. LING Z Q,ZHOU H,QIAN X P,et al. Numerical simulation of hydrogen production in porous media from hydrogen sulfide by partialoxidation[J]. Acta Scientiae Circumstantiae,2006,26(1):22-26. [36] 李国能,周昊,钱欣平,等. 多孔介质内H2S超绝热燃烧制氢的数值模拟[J]. 化工学报,2006,57(9):2175-2179. LI G N,ZHOU H,QIAN X P,et al. Modeling hydrogen production in super-adiabatic com bustion of hydrogen sulfide in porous media[J]. Journal of Chemical Industry and Engineering (China),2006,57(9):2175-2179. [37] 凌忠钱. 多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟[D]. 杭州:浙江大学,2008. LING Z Q. Experimental study and numerical simulation on super-adiabatic combustion and hydrogen production based on pyrolysis of H2S in porous media[D]. Hangzhou:Zhejiang University,2008. [38] SHIH Y S,LEE J L. Continuous solvent extraction of sulfur from the electrochemical oxidation of a basic sulfide solution in the CSTER system[J]. Industrial & Engineering Chemistry Process Design and Development,1986,25(3):834-836. [39] KALINA D W,MAAS JR E T. Indirect hydrogen sulfide conversion-Ⅱ. A basic electrochemical process[J]. Int. J. Hydrogen Energy,1985,10(3):163-167. [40] 罗文利,赵永丰. 从硫化氢中回收氢气和硫黄的方法[J]. 石油大学学报(自然科学版),1994,18(4):95-101. LUO W L,ZHAO Y F. A method for the recovery of hydrogen and element sulfur from hydrogen sulfide[J]. Journal of the University of Petroleum,China,1994,18(4):95-101. [41] 李发永,曹作刚,张海鹏,等. 由硫化氢制取硫黄及氢气扩大实验研究[J]. 化工进展,2001,20(7):38-41. Li F Y,CAO Z G,ZHANG H P,et al. Experimental study on transforming refinery acid tail gas into sulphur and hydrogen[J]. Chemical Industry and Engineering Progress,2001,20(7):38-41. [42] 袁长忠,邢定峰,俞英. 硫化氢间接电解制氢中试阴极动力学研究[J]. 化工学报,2005,56(7):1317-1321. YUAN C Z,XING D F,YU Y. Macroscopic kinetics of cathodic reaction in pilot-scale hydrogen production from indirect electrolysis of hydrogen sulfide[J]. Journal of Chemical Industry and Engineering (China),2005,56(7):1317-1321. [43] SERPONE N,BORGARELLO E,GR TZEL M. Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer[J]. Journal of the Chemical Society,Chemical Communications,1984,6:342-344. [44] BORGARELLO E,SERPONE N,GR TZEL M,et al. Hydrogen production through microheterogeneous photocatalysis of hydrogen sulfide cleavage. The thiosulfate cycle[J]. Int. J. Hydrogen Energy,1985,10(11):737-741. [45] KHAN M T,BHARDWAJ R,BHARDWAJ C. Photodecomposition of H2S by silver doped cadmium sulfide and mixed sulfides with ZnS[J]. Int. J. Hydrogen Energy,1988,13(1):7-10. [46] DE G C,ROY A M,BHATTACHARYA S S. Photocatalytic production of hydrogen and concomitant cleavage of industrial waste hydrogen sulphide[J]. Int. J. Hydrogen Energy,1995,20(2):127-131. [47] 马贵军,鄢洪建,宗旭,等. 气-固相光催化分解硫化氢制氢[J]. 催化学报,2008,29(4):313-315. MA G J,YAN H J,ZONG X,et al. Photocatalytic splitting of H2S to produce hydrogen by gassolid phase reaction[J]. Chinese Journal of Catalysis,2008,29(4):313-315. [48] SO W W,KIM K J,MOON S J. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4[J]. Int. J. Hydrogen Energy,2004,29(3):229-234. [49] JANG J S,LI W,OH S H,et al. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light[J]. Chemical Physics Letters,2006,425(4):278-282. [50] RUBAN P,SELLAPPA K. Concurrent hydrogen production and hydrogen sulfide decomposition by solar photocatalysis[J]. Clean——Soil,Air,Water,2016,44(9999):1-13. [51] SUBRAMANIAN E,BAEG J O,KALE B B,et al. Visible light driven ZnFe2Ta2O9catalyzed decomposition of H2S for solar hydrogen production[J]. Bull. Korean Chem. Soc.,2007,28(11):2089-2092. [52] KANADE K,BAEG J O,MULIK U,et al. Nano-CdS by polymer-inorganic solid-state reaction:visible light pristine photocatalyst for hydrogen generation[J]. Materials Research Bulletin,2006,41(12):2219-2225. [53] WANG Z,CI X,DAI H,et al. One-step synthesis of highly active Ti-containing Cr-modified MCM-48 mesoporous material and the photocatalytic performance for decomposition of H2S under visible light[J]. Appl. Surf. Sci.,2012,258(20):8258-8263. [54] KIM H H. Nonthermal plasma processing for air-pollution control:a historical review,current issues,and future prospects[J]. Plasma Processes and Polymers,2004,1(2):91-110. [55] TRAUS I,SUHR H,HARRY J,et al. Application of a rotating high-pressure glow discharge for the dissociation of hydrogen sulfide[J]. Plasma Chemistry and Plasma Processing,1993,13(1):77-91. [56] HELFRITCH D. Pulsed corona discharge for hydrogen sulfide decomposition[J]. IEEE Transactions on Industry Applications,1993,29(5):882-886. [57] TRAUS I,SUHR H. Hydrogen sulfide dissociation in ozonizer discharges and operation of ozonizers at elevated temperatures[J]. Plasma Chemistry and Plasma Processing,1992,12(3):275-285. [58] REDDY E L,KARUPPIAH J,SUBRAHMANYAM C. Kinetics of hydrogen sulfide decomposition in a DBD plasma reactor operated at high temperature[J]. Journal of Energy Chemistry,2013,22(3):382-386. [59] REDDY E L,BIJU V,SUBRAHMANYAM C. Production of hydrogen from hydrogen sulfide assisted by dielectric barrier discharge[J]. Int. J. Hydrogen Energy,2012,37(3):2204-2209. [60] REDDY E L,BIJU V,SUBRAHMANYAM C. Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma[J]. Applied Energy,2012,95:87-92. [61] ZHAO L,WANG Y,JIN L,et al. Decomposition of hydrogen sulfide in non-thermal plasma aided by supported CdS and ZnS semiconductors[J]. Green Chemistry,2013,15(6):1509-1513. [62] ZHAO L,WANG Y,LI X,et al. Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis[J]. Int. J. Hydrogen Energy,2013,38(34):14415-14423. [63] RUSANOV V D,FRIDMAN A A. The physics of a chemically active plasma[J]. Moscow Izdatel Nauka,1984,1:416-429. [64] FRIDMAN A. Plasma chemistry[M]. Oxford:Cambridge University Press,2008:738-749. [65] DALAINE V,CORMIER J,PELLERIN S,et al. H2S destruction in 50 Hz and 25 kHz gliding arc reactors[J]. Journal of Applied Physics,1998,84(3):1215-1221. [66] GUTSOL K,NUNNALLY T,RABINOVICH A,et al. Mechanisms of non-equilibrium dissociation of hydrogen sulfide in low-temperature plasma[C]//Proceedings of the 2010 IEEE International Conference on Plasma Science,Norfolk:IEEE,2010. [67] KRASHENINNIKOV E,RUSANOV V,SANYUK S,et al. Dissociation of hydrogen sulfide in an RF discharge[J]. Soviet Physics——Technical Physics,1986,31(6):645-648. [68] ASISOV R,VAKAR A,GUTSOL A,et al. Plasmachemical methods of energy carrier production[J]. Int. J. Hydrogen Energy,1985,10(7):475-477. [69] BAGAUTDINOV A,ZHIVOTOV V,KALACHEV I,et al. Dissociation of hydrogen sulfide in a mixture with carbon dioxide gas in a high-power microwave discharge[J]. Soviet Physics——Technical Physics,1991,36(4):488-490. [70] BAGAUTDINOV A,JIVOTOV V,EREMENKO J,et al. Plasma chemical production of hydrogen from H2S-containing gases in MCW discharge[J]. Int. J. Hydrogen Energy,1995,20(3):193-195. [71] BAGAUTDINOV A,ZHIVOTOV V,KALACHEV I,et al. Investigations of the radial distributions of gas-flows in a high-power microwave-discharge[J]. High Energy Chemistry,1993,27(4):305-310. [72] BAGAUTDINOV A,JIVOTOV V,EREMENKO Y,et al. Plasmachemical hydrogen production from natural gases containing hydrogen sulfide[J]. Hydrogen Energy Progress,1998,1:683-690. [73] COX B G,CLARKE P F,PRUDEN B B. Economics of thermal dissociation of H2S to produce hydrogen[J]. Int. J. Hydrogen Energy,1998,23(7):531-544. [74] 董永治,王涵慧,俞稼镛. 微波等离子体方法分解H2S制氢[J]. 太阳能学报,1997,18(2):142-145. DONG Y Z,WANG H H,YU J Y. Hydrogen production by H2S microwave plasma dissociation[J]. Acta Energiae Solaris Sinica,1997,18(2):142-145. [75] 汪建华,徐尧,高建保,等. 常压微波等离子体微波功率对硫化氢分解效率的影响[J]. 武汉工程大学学报,2013,35(3):34-37. WANG J H,XU Y,GAO J B,et al. Influence of microwave power on decomposition of hydrogen sulfide by atmospheric microwave plasma[J]. Journal of Wuhan Institute of Technology,2013,35(3):34-37. [76] 徐尧,汪建华,高建保,等. 大气微波等离子体射流处理H2S废气[J]. 强激光与粒子束,2013,25(11):2909-2913. XU Y,WANG J H,GAO J B,et al. Treatment of waste H2S by atomospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams,2013,25(11):2909-2913. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[5] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[6] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[7] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[8] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[9] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[10] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[11] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[12] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[13] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[14] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[15] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |