化工进展 ›› 2017, Vol. 36 ›› Issue (08): 2764-2775.DOI: 10.16085/j.issn.1000-6613.2016-2323
战洪仁, 惠尧, 吴众
收稿日期:
2016-12-14
修回日期:
2017-03-16
出版日期:
2017-08-05
发布日期:
2017-08-05
通讯作者:
战洪仁(1964-),女,博士,教授,主要研究方向为强化传热与节能技术。
作者简介:
战洪仁(1964-),女,博士,教授,主要研究方向为强化传热与节能技术。E-mail:z_hr555@163.com。
基金资助:
ZHAN Hongren, HUI Yao, WU Zhong
Received:
2016-12-14
Revised:
2017-03-16
Online:
2017-08-05
Published:
2017-08-05
摘要: 介绍了闭式热虹吸管的工作原理和性能表征方式,从固有参数和操作条件两个方面对闭式热虹吸管强化传热研究进行了综述,阐述通过改变工质种类、充液率、结构参数、表面处理、加热功率、运行温度、倾角和冷却介质流量等因素对闭式热虹吸管性能影响的主要机理。归纳总结了上述因素对闭式热虹吸管传热性能影响的研究现状和变化规律,并指出目前闭式热虹吸管强化传热研究中的不足和局限性。建议研究中应确定各性能影响因素之间的协同关系,消除其他因素的影响,扩大所研究变量变化范围。此外建议将闭式热虹吸管强化传热研究与封闭空间内沸腾和冷凝等传热传质过程强化机理研究相结合,完善传热传质理论及计算公式。
中图分类号:
战洪仁, 惠尧, 吴众. 闭式热虹吸管强化传热研究进展[J]. 化工进展, 2017, 36(08): 2764-2775.
ZHAN Hongren, HUI Yao, WU Zhong. Research progress on heat transfer enhancement in closed thermosyphon[J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2764-2775.
[1] EIDAN A A,NAJIM S E,JALIL J M. Experimental and numerical investigation of thermosyphon performance in HVAC system applications[J]. Heat & Mass Transfer,2016,52(12):2879-2893. [2] DUTOUR S,MAZET N,JOLY J L,et al. Modeling of heat and mass transfer coupling with gas-solid reaction in a sorption heat pump cooled by a two-phase closed thermosyphon[J]. Chemical Engineering Science,2005,60(15):4093-4104. [3] LU Z,WANG R. Novel adsorption refrigerators with separate type two phase closed thermosyphon designs[J]. International Journal of Energy Research,2015,39(12):1681-1688. [4] TAN L. Thermal performance of two-phase closed thermosyphon in application of concentrated thermoelectric power generator using phase change material thermal storage[C]//International Heat Pipe Symposium. Tamkang University Press,2011:1-6. [5] VIKNESWARAN N,PASUPATHY A,ARUMUGANAINAR K. Thermal presentation of two-phase congested thermosyphon in submission of determined thermoelectric dominance producer by means of phase change material thermal storage[J]. Advanced Materials Research,2014,984/985:1153-1162. [6] FENG Z,XIN T,MA G Y. Investigation into the energy consumption of a data center with a thermosyphon heat exchanger[J]. Science Bulletin,2011,56(20):2185-2190. [7] PIPATPAIBOON N,RITTIDECH S,MEENA P. Experimental study of a thermosyphon heat exchanger (TPHE) in a bio-diesel factory in Thailand[J]. Arabian Journal for Science and Engineering,2012,37(7):2047-2060. [8] JEBRAIL F F,ANDREWS M J. Performance of a heat pipe thermosyphon radiator[J]. International Journal of Energy Research,1997,21(2):101-112. [9] PARAMETTHANUWAT T,RITTIDECH S,PATTIYA A,et al. Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer.[J]. Nanoscale Research Letters,2011,6(1):1-10. [10] HASSAN Z A,HOSSEIN A,HOSSEIN N S,et al. Experimental and numerical analysis of flow and heat transfer in a gas-liquid thermosyphon heat exchanger in a pilot plant[J]. Iranian Journal of Chemistry & Chemical Engineering-internation English Edition,2010,29(2):121-129. [11] YODRAK L,RITTIDECH S,POOMSA A N. Application of thermosyphon air-preheater for energy thrift from a furnace in a hot forging process[J]. Journal of Mechanical Science and Technology,2011,25(1):193-200. [12] SRIMUANG W,AMATACHAYA P. A review of the applications of heat pipe heat exchangers for heat recovery[J]. Renewable & Sustainable Energy Reviews,2012,16(6):4303-4315. [13] MARCINICHEN J B,LAMAISON N,ONG C L,et al. Two-phase mini-thermosyphon electronics cooling. Part 2:Model and steady-state validations[C]//Itherm. 2016. [14] TSAI T E,WU H H,ChANG C C,et al. Two-phase closed thermosyphon vapor-chamber system for electronic cooling[J]. International Communications in Heat & Mass Transfer,2010,37(5):484-489. [15] LAMAISON N,MARCINICHEN J,SZCZUKIEWICZ S,et al. Passive thermosyphon cooling system for high heat flux servers[J]. Interfacial Phenomena and Heat Transfer,2015,3(4):369-389. [16] GIMA S,NAGATA T,ZHANG X,et al. An experimental study on cooling of CPU using a two phase closed thermosyphon loop[C]//Nihon Kikai Gakkai Ronbunshu,B Hen/transactions of the Japan Society of Mechanical Engineers Part B,2004,70(694):1504-1509. [17] NADA S A,El-GHETANY H H,HUSSEIN H M S. Performance of a two-phase closed thermosyphon solar collector with a shell and tube heat exchanger[J]. Applied Thermal Engineering,2004,24(13):1959-1968. [18] HUSSEIN H M S. Optimization of a natural circulation two phase closed thermosyphon flat plate solar water heater[J]. Energy Conversion & Management,2003,44(44):2341-2352. [19] ABREU S L,COLLE S. An experimental study of two-phase closed thermosyphons for compact solar domestic hot-water systems[J]. Solar Energy,2004,76(1/2/3):141-145. [20] AUNG N Z,Li S. Numerical investigation on effect of riser diameter and inclination on system parameters in a two-phase closed loop thermosyphon solar water heater[J]. Energy Conversion & Management,2013,75(5):25-35. [21] CHIEN C C,KUNG C K,CHANG C C,et al. Theoretical and experimental investigations of a two-phase thermosyphon solar water heater[J]. Energy,2011,36(1):415-423. [22] TONINELLI P,MARIANI A,COL D D. Experiments and simulations on a thermosyphon solar collector with integrated storage[J/OL]. Journal of Physics:Conference Series,2015,655(1):012009. [23] MU Y,LI G,YU Q,et al. Numerical study of long-term cooling effects of thermosyphons around tower footings in permafrost regions along the Qinghai-Tibet power transmission line[J]. Cold Regions Science & Technology,2015,121:237-249. [24] WU D,JIN L,PENG J,et al. The thermal budget evaluation of the two-phase closed thermosyphon embankment of the Qinghai-Tibet highway in permafrost regions[J]. Cold Regions Science & Technology,2014,103:115-122. [25] BO Z,YU S,JI C,et al. In-situ test study on the cooling effect of two-phase closed thermosyphon in marshy permafrost regions along the Chaidaer-Muli railway,Qinghai province,China[J]. Cold Regions Science & Technology,2011,65(3):456-464. [26] XU J,GOERING D J. Experimental validation of passive permafrost cooling systems[J]. Cold Regions Science & Technology,2008,53(3):283-297. [27] ZHANG X,CHE H. Reducing heat loss of fluids in heavy oil wellbore using two-phase closed thermosyphon sucker rod[J]. Energy,2013,57(3):352-358. [28] AN Y S,ZHANG Y F. The Experimental research on the reduction of heat loss rate of wellbores with two-phase closed thermosyphon wellbore[J]. Research Journal of Applied Sciences Engineering & Technology,2013,5(22):5154-5158. [29] ZHANG Yufeng,WANG Xiaodong,TANG Shouceng,et al. Research on two-phase closed thermosyphon to improve fluid temperature distribution in wellbores[J]. Petroleum Science & Technology,2010,28(18):1884-1894. [30] KANNAN M,NATARAJAN E. Thermal performance of a two-phase closed thermosyphon for waste heat recovery system[J]. Journal of Applied Sciences,2010,10:413-418. [31] BARZI Y M,ASSADI M. Evaluation of a thermosyphon heat pipe operation and application in a waste heat recovery system[J]. Experimental Heat Transfer,2015,28(5):493-510. [32] BOLOZDYNYA A I,EFREMENKO Y V,KHROMOV V A,et al. Thermostabilization system based on two-phase closed cryogenic thermosyphon for RED100 detector[J]. Physics Procedia,2015,74:431-434. [33] USHAKOV K Y,PETERS A N,BOGOMOLOV A R,et al. Evaluation of thermosyphon application for cooling the modular automated control systems[J]. EDP Sciences,2016,72:01119. [34] ARUL A S,VELRAJ R. Experimental investigation and CFD analysis of a air cooled condenser heat pipe[J]. Thermal Science,2011,15(3):759-772. [35] NAJIM A,PISE S. Boiling heat transfer enhancement with surfactant on the tip of a submerged hypodermic needle as nucleation site[J]. Applied Thermal Engineering,2016,103:989-995. [36] GEDIK E. Experimental investigation of the thermal performance of a two-phase closed thermosyphon at different operating conditions[J]. Energy & Buildings,2016,127:1096-1107. [37] KANNAN M,NATERAJAN E. Thermal performance of a two-phase closed thermosyphon for waste heat recovery system[J]. Journal of Applied Sciences,2010,10(5):413-418. [38] JOUHARA H,ROBINSON A J. Experimental study of small diameter thermosyphons charged with water,FC-84,FC-77& FC-3283[J]. Applied Thermal Engineering,2010,30(2/3):201-211. [39] MUSTAFA A E,ABDULLAH Y. Thermoeconomic analysis of thermosyphon heat pipes[J]. Renewable & Sustainable Energy Reviews,2016,58:666-673. [40] JÖUHARA H,AJJI Z,KOUDSI Y,et al. Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol-water azeotropic mixture[J]. Energy,2013,61(6):139-147. [41] SÖZEN A,MENLIK T,GURU M,et al. Upgrading of the thermal performance of two-phase closed thermosyphon(TPCT)using fusel oil[J]. Heat & Mass Transfer,2017:53(1):141-149. [42] MANIVASAGAN P,OH J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications[J]. International Journal of Biological Macromolecules,2016,82:315-327. [43] NAVYA P N,DAIMA H K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives[J]. Nano Convergence,2016,2(1):1-14. [44] NARAYANASWAMY R,WANG T,TORCHILIN V P. Improving peptide applications using nanotechnology[J]. Current Topics in Medicinal Chemistry,2016,16(3):253-270. [45] PANDEY S,RAMONTJA J. Turning to nanotechnology for water pollution control:applications of nanocomposites[J]. Dartmouth Undergraduate Journal of Science,2016,2(2):1-10. [46] HUSSEIN A K. Applications of nanotechnology to improve the performance of solar collectors-recent advances and overview[J]. Renewable & Sustainable Energy Reviews,2016,62:767-792. [47] KHANDEKAR S,JOSHI Y M,MEHTA B. Thermal performance of closed two-phase thermosyphon using nanofluids[J]. International Journal of Thermal Sciences,2008,47(6):659-667. [48] 杨雪飞. 改性纳米流体的相变换热特性及其在重力热管中的应用[D]. 上海:上海交通大学,2011. YANG Xuefei. Investigation of phase-changing heat transfer characteristics of functionalized nanofluid and its application in gravity-assisted heat pipes[D]. Shanghai:Shanghai Jiaotong University,2011. [49] KAMYAR A,ONG K S,SAIDUR R. Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon[J]. International Journal of Heat & Mass Transfer,2013,65(7):610-618. [50] NOIE S H,HERIS S Z,KAHANI M,et al. Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon[J]. International Journal of Heat & Fluid Flow,2009,30(4):700-705. [51] MOHAMMADPUR F. Experimental study of two phase closed thermosyphon using CuO/water nanofluid in the presence of electric field[J]. Experimental Heat Transfer,2015,28(4):328-343. [52] THARVES M,SURESH K. An experimental investigation of the thermal performance of two-phase closed thermosyphon (TPCT) using zirconia (ZrO2/H2O) nanofluid[J]. Thermal Science,2014,6(17):116. [53] PARAMATTHANUWAT T,BOOTHAISONG S,RITTIDECH S,et al. Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano[J]. Heat & Mass Transfer,2010,46(3):281-285. [54] HERIS S Z,MOHAMMADPUR F,SHAKOURI A. Effect of electric field on thermal performance of thermosyphon heat pipes using nanofluids[J]. Materials Research Bulletin,2014,53:21-27. [55] SALEHI H,HERIS S Z,NOIE S H. Experimental study of two-phase closed thermosyphon with nanofluid and magnetic field effect[J]. Journal of Enhanced Heat Transfer,2011,18(3):261-269. [56] 彭玉辉,黄素逸,黄锟剑. 热管中添加纳米颗粒[J]. 化工学报,2004,55(11):1768-1772. PENG Yuhui,HUANG Suyi,HUANG Kunjian. Experimental study on thermosyphon by adding nanoparticles to fluid[J]. Journal of Chemical Industry and Engineering (China),2004,55(11):1768-1772. [57] 彭玉辉,黄素逸,黄锟剑. 纳米颗粒强化热虹吸管传热特性的实验研究[J]. 热能动力工程,2005,20(2):138-141. PENG Yuhui,HUANG Suyi,HUANG Kunjian. Experimental study of the intensified heat transfer characteristics of a thermosiphon through the addition of nanoparticles[J]. Journal of Engineering for Thermal Energy and Power,2005,20(2):138-141. [58] KHANDEKAR S,JOSHI Y M,MEHTA B. Thermal performance of closed two-phase thermosyphon using nanofluids[J]. International Journal of Thermal Sciences,2008,47(6):659-667. [59] 刘俊红,顾建明,刘辉,等. 纳米级固体颗粒应用于热管的试验研究[J]. 核动力工程,2005,26(3):268-271. LIU Junhong,GU Jianming,LIU Hui,et al. Experimental study of heat pipe of nanometer particles[J]. Nuclear Power Engineering,2005,26(3):268-271. [60] 薛怀生,樊建人,胡亚才,等. 碳纳米管悬浮液在重力热管中的沸腾特性[J]. 化工学报,2006,57(11):2562-2567. XUE Huaisheng,FAN Jianren,HU Yacai,et al. Boiling characteristics of carbon nanotube suspension in gravity assisted thermosyphon[J]. Journal of Chemical Industry and Engineering (China),2006,57(11):2562-2567. [61] 黄素逸,李中洲,黄锟剑,等. 纳米材料在热管中的应用[J]. 华中科技大学学报(自然科学版),2006,34(5):105-107. HUANG Suyi,LI Zhongzhou,HUANG Kunjian,et al. The application of nanoparticles to heat pipes[J]. Huazhong Univ. of Sci&.Tech.(Nature Science Edition),2006,34(5):105-107. [62] KANG S W,WEI W C,TSAI S H,et al. Experimental investigation of nanofluids on sintered heat pipe thermal performance[J]. Applied Thermal Engineering,2009,29(5/6):973-979. [63] 薛怀生,樊建人,胡亚才,等. 碳纳米管悬浮液在重力热管中的沸腾特性[J}. 化工学报,2006,57(11):2562-2567. XUE Huaisheng,FAN Jianren,HU Yacai,et al. Boiling characteristics of carbon nanotube suspension in gravity assisted thermosyphon[J]. Journal of Chemical Industry and Engineering(China),2006,57(11):2562-2567. [64] DAS S K, PUTRA N, ROETZEL W. Pool boiling of nano-fluids on horizontal narrow tubes[J]. International Journal of Multiphase Flow,2003,29(8):1237-1247. [65] JIANG F,CHEN W J,LIU Z,et al. Heat transfer enhancement in a three-phase closed thermosyphon[J]. Applied Thermal Engineering,2014,65(1/2):495-501. [66] JIANG F,TAN Y,QI G P,et al. Heat transfer enhancement in a closed thermosyphon with thermally conductive PA6/water[J]. Applied Thermal Engineering,2016,101:322-329. [67] 刘泽. 闭式重力热管的传热性能研究[D]. 天津:天津大学,2012. LIU Ze. Study on heat transfer performance in closed gravity heat pipe[D].Tianjin:Tianjin University,2012. [68] 徐晓萍,史金涛,姜峰,等. 具有内置管的多相流闭式重力热管传热性能[J]. 天津大学学报(自然科学与工程技术版),2014(10):928-933. XU Xiaoping,SHI Jintao,JIANG Feng,et al. Heat transfer performance of multiphase flow closed thermosyphon with a built-in pipe[J]. Journal of Tianjin University (Science and Technology),2014(10):928-933. [69] 徐晓萍. 三相流闭式重力热管的强化传热研究[D]. 天津:天津大学,2010. XU Xiaoping. Study on heat transfer enhancement in three-phase flow closed gravity heat pipe[D]. Tianjin:Tianjin University,2010. [70] 史金涛. 三相流重力热管的传热性能研究[D]. 天津:天津大学,2010. SHI Jintao. Study on heat transfer performance in three-phase flow gravity heat pipe[D]. Tianjin:Tianjin University,2010. [71] NOIE S H,SARMASTI EMAMI M R,KHOSHNOODI M. Effect of inclination angle and filling ratio on thermal performance of a two-phase closed thermosyphon under normal operating conditions[J]. Heat Transfer Engineering,2007,28(4):365-371. [72] YONG J P,KANG H K,KIM C J. Heat transfer characteristics of a two-phase closed thermosyphon to the fill charge ratio[J]. International Journal of Heat & Mass Transfer,2002,45(23):4655-4661. [73] AMATACHAYA P,SRIMUANG W. Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT)[J]. International Communications in Heat & Mass Transfer,2010,37(3):293-298. [74] 田富中. 两相闭式热虹吸管强化传热特性研究[D]. 济南:山东大学,2014. TIAN Fuzhong. Heat transfer enhancement characteristics investigation of two-phase closed thermosyphon[D]. Ji'nan:Shandong University,2014. [75] 王鑫煜. 内螺纹重力热管强化传热特性研究[D]. 济南:山东大学,2013. WANG Xinyu. Heat transfer enhancement characteristics investigation of gravity heat pipe with internal helical microfin[D]. Ji'nan:Shandong University,2013. [76] KHAZAEE I. Experimental investigation and comparison of heat transfer coefficient of a two phase closed thermosyphon[J]. International Journal of Energy Environment & Economics,2014,5(4):495-504. [77] 史启辉. 两相闭式热虹吸管强化传热实验研究[D]. 郑州:郑州大学,2007. SHI Qihui. Heat transfer enhancement investigation of two-phase closed thermosyphon[D]. Zhengzhou:Zhengzhou University,2007. [78] 刘林龙. 碳钢-水重力式热管传热与稳定性能的实验与数值研究[D]. 沈阳:东北大学,2012. LIU Linlong. The experiment and numerical study on heat transfer and stable performance of steel-water gravity heat-pipe[D]. Shenyang:Northeastern University,2012. [79] 李斌彬. 重力热管传热强化表面改性技术开发与效果评价[D]. 上海:华东理工大学,2012. LI Binbin. Technology development and enhanced heat transfer effect evaluation of surface modification in gravity heat pipe[D]. Shanghai:East China University of Science and Technology,2012. [80] 刘卫火,蒋绿林,高伟. 重力热管性能测试的实验研究[J]. 化工机械,2012,39(1):13-16. LIU Weihuo,JIANG Lvlin,GAO Wei. Experimental study on thermosyphon performance testing[J]. Chemical Engineering & Machinery,2012,39(1):13-16. [81] KHAZAEE I,HOSSEINI R,KIANIFAR A,et al. Experimental consideration and correlation of heat transfer of a two-phase closed thermosyphon due to the inclination angle,filling ratio,and aspect ratio[J]. Journal of Enhanced Heat Transfer,2011,18(1):31-40. [82] SRIMUANG W,RITTIDECH S,BUBPHACHOT B. Heat transfer characteristics of a vertical flat thermosyphon (VFT)[J]. Journal of Mechanical Science & Technology,2009,23(9):2548-2554. [83] CHENG P. Microscale surface effects in boiling and condensation heat transfer[J]. Science,2016(4):8-11. [84] HAMAD M,ALWUEAIDI J. Experimental investigation on the heat transfer coefficient of the thermosyphon cross section shape[EB/OL].[2016-12-14]. https://doaj.org/article/484d029f78a74e538e0c3a14208988dc. [85] AGHEL B,RAHIMI M,ALMASI S. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser[J]. Heat & Mass Transfer,2017,53(3):765-773. [86] WANG X Y,XIN G M,TIAN F Z,et al. Effect of internal helical microfin on condensation performance of two-phase closed thermosyphon[J]. Advanced Materials Research,2012,516-517:9-14. [87] 德军. 三维内微肋热管传热强化实验[D]. 重庆:重庆大学,2003. DE Jun. Heat augmentation experiment of three dimensional thermosyphon[D]. Chongqing:Chongqing University,2003. [88] 德军,辛明道,廖全. 三维内微肋水热管强化传热实验[J]. 能源研究与信息,2002,18(4):237-242. DE Jun,XIN Mingdao,LIAO Quan. Experiments on heat transfer augmentation of the three-dimensional-internally microfinned water heat pipe[J]. Energy Research and Information,2002,18(4):237-242. [89] 杜猛. 螺纹槽重力热管传热性能实验研究[D]. 青岛:青岛理工大学,2014. DU Meng. Experimental research on heat transfer capability of spiral groove thermosyphon[D]. Qingdao:Qingdao Technological University,2014. [90] SOLOMON A B,MATHEW A,RAMACHANDRAN K,et al. Thermal performance of anodized two phase closed thermosyphon (TPCT)[J]. Experimental Thermal & Fluid Science,2013,48(48):49-57. [91] TONG W,TAN M,CHIN J,et al. Coupled effects of hydrophobic layer and vibration on thermal efficiency of two-phase closed thermosyphons[J]. RSC Advances,2015,5(14):10332-10340. [92] 郭广亮. 纳米流体强化小型热虹吸管换热特性的实验研究[D]. 上海:上海交通大学,2007. GUO Guangliang. Experimental investigation of heat transfer enhancement in the small thermosyphon using nanofluids[D]. Shanghai:Shanghai Jiao Tong University,2007. [93] 姜超. 铝-氨槽道热管的制造及传热特性分析[D]. 济南:山东大学,2013. JIANG Chao. Manufacturing and heat transfer characteristics of aluminum-ammonia axial grooved heat pipe[D]. Ji'nan:Shandong University,2013. [94] ZHANG M,LAI Y,PEI W,et al. Effect of inclination angle on the heat transfer performance of a two-phase closed thermosyphon under low-temperature conditions[J]. Journal of Cold Regions Engineering,2014,28(4). [95] 孟强. 高温熔盐重力热管的初步实验研究[D]. 北京:北京工业大学,2015. MENG Qiang. Preliminary experimental study of high temperature molten salt heat pipe[D]. Beijing:Beijing University of Technology,2015. [96] 贾鹏飞,金苏敏. 横管蒸发纵管冷凝式热管参数变化对其传热的影响[J]. 南通大学学报(自然科学版),2015,14(1):23-27. JIA Pengfei,JIN Sumin. Influence of parameter changes of horizontal tube evaporating and vertical tube condensate heat pipe on heat transfer performance[J]. Journal of Nantong University(Natural Science Edition),2015,14(1):23-27. |
[1] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[2] | 刘世杰, 莫逊, 涂爱民, 朱冬生, 谭连元. 新型纵流油冷却器壳程强化传热[J]. 化工进展, 2022, 41(7): 3475-3482. |
[3] | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
[4] | 李勇铜, 刘健, 杨来顺. 新型金属泡沫-微柱群复合热沉内流动传热性能分析[J]. 化工进展, 2022, 41(5): 2268-2276. |
[5] | 林清宇, 王祝, 冯振飞, 凌彪, 陈镇. 扭带结构影响管内传热与熵产的研究进展[J]. 化工进展, 2022, 41(11): 5709-5721. |
[6] | 林伟翔, 苏港川, 陈强, 文键, AKRAPHON Janon, 王斯民. 沉浸式换热器超声强化传热影响因素[J]. 化工进展, 2022, 41(1): 40-51. |
[7] | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
[8] | 王子乾, 杨林林, 孙海. 高温质子交换膜燃料电池性能衰减机理与缓解策略——第二部分: 操作条件[J]. 化工进展, 2021, 40(1): 111-129. |
[9] | 曾龙,雷海燕,戴传山. 单相自然循环回路的强化对流传热特性[J]. 化工进展, 2020, 39(4): 1259-1266. |
[10] | 孙丽丽. 创新强化传热策略与应用提升炼化企业竞争力[J]. 化工进展, 2019, 38(02): 711-719. |
[11] | 陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(08): 2798-2808. |
[12] | 张海松, 谢国威, 战洪仁, 毕仕辉. 两相闭式热虹吸管内部过程可视化及其强化传热研究进展[J]. 化工进展, 2017, 36(03): 791-801. |
[13] | 刘燕, 张英迪, 裴程林, 王智, 张伟. 水平液固循环流化床换热器传热性能评价[J]. 化工进展, 2016, 35(11): 3421-3425. |
[14] | 李雅侠, 张腾, 张春梅, 张丽, 吴剑华. 高低双螺旋片强化套管换热器壳侧换热[J]. 化工进展, 2016, 35(04): 1042-1046. |
[15] | 曹海亮, 黄丹, 贾宝光, 苏航, 年志远, 王定标. 弯曲内肋换热管综合换热性能的数值模拟[J]. 化工进展, 2015, 34(s1): 35-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |