化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1206-1217.DOI: 10.16085/j.issn.1000-6613.2024-0449
王美杰1(
), 韦刘轲2, 贾保印2, 蓝兴英1, 高金森1, 石孝刚1(
)
收稿日期:2024-03-19
修回日期:2024-05-01
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
石孝刚
作者简介:王美杰(2000—),女,硕士研究生,研究方向为油气加工工艺与工程。E-mail:wangmeijie1024@163.com。
基金资助:
WANG Meijie1(
), WEI Liuke2, JIA Baoyin2, LAN Xingying1, GAO Jinsen1, SHI Xiaogang1(
)
Received:2024-03-19
Revised:2024-05-01
Online:2025-03-25
Published:2025-04-16
Contact:
SHI Xiaogang
摘要:
天然气具有清洁低碳、热值高、高效灵活等优点,对促进中国新型能源结构转型具有重要意义。LNG接收站承担着天然气的储存与计量外输任务,其中气化器作为LNG接收站的关键设备近年来受到广泛关注,目前国内外学者通过实验和模拟的方式围绕气化器的结构与换热性能开展了相关研究并取得了一定成果,但是关于强化换热的措施有待创新和突破。本文综述了LNG接收站中常用气化器的运作方式及换热机理,分析了各气化器的适用条件,重点介绍了海水超级开架式气化器内部流动及传热过程的物理机制,总结出了各运行参数、设计结构及结冰状况对气化性能的影响,提出了强化传热的措施和研究方向,为气化器的结构与过程优化提供了一定参考建议。
中图分类号:
王美杰, 韦刘轲, 贾保印, 蓝兴英, 高金森, 石孝刚. LNG开架式气化器传热强化的研究进展[J]. 化工进展, 2025, 44(3): 1206-1217.
WANG Meijie, WEI Liuke, JIA Baoyin, LAN Xingying, GAO Jinsen, SHI Xiaogang. Research progress on heat transfer enhancement of LNG open rack vaporizer[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1206-1217.
| 1 | KUMAR Satish, KWON Hyouk-Tae, CHOI Kwang-Ho, et al. LNG: An eco-friendly cryogenic fuel for sustainable development[J]. Applied Energy, 2011, 88(12): 4264-4273. |
| 2 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
| HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
| 3 | 邹才能, 赵群, 陈建军, 等. 中国天然气发展态势及战略预判[J]. 天然气工业, 2018, 38(4): 1-11. |
| ZOU Caineng, ZHAO Qun, CHEN Jianjun, et al. Natural gas in China: Development trend and strategic forecast[J]. Natural Gas Industry, 2018, 38(4): 1-11. | |
| 4 | 张阳阳. 天然气的运输方式及其特点[J]. 石化技术, 2021, 28(3): 189-190. |
| ZHANG Yangyang. Transportation mode and characteristics of natural gas[J]. Petrochemical Industry Technology, 2021, 28(3): 189-190. | |
| 5 | YIN Yuwei, LAM Jasmine Siu Lee. Bottlenecks of LNG supply chain in energy transition: A case study of China using system dynamics simulation[J]. Energy, 2022, 250: 123803. |
| 6 | 孙博, 李柏松, 李雅娇, 等. 公平开放条件下LNG接收站业务发展思考[J]. 油气储运, 2023, 42(12): 1329-1336. |
| SUN Bo, LI Baisong, LI Yajiao, et al. Thoughts on development of LNG receiving terminal business under fair and open conditions[J]. Oil & Gas Storage and Transportation, 2023, 42(12): 1329-1336. | |
| 7 | 程民贵. 中国液化天然气接收站发展趋势思考[J]. 国际石油经济, 2022, 30(5): 60-65. |
| CHENG Mingui. Thoughts on the development trend of LNG terminal in China[J]. International Petroleum Economics, 2022, 30(5): 60-65. | |
| 8 | 刘筠竹. LNG接收站的发展趋势[J]. 煤气与热力, 2021, 41(9): 11-15, 45. |
| LIU Yunzhu. Development trend of liquefied natural gas terminals[J]. Gas & Heat, 2021, 41(9): 11-15, 45. | |
| 9 | 苏黎明, 王攀胜, 谷学山. 浅谈LNG接收站工艺设备布置与配管[J]. 石化技术, 2022, 29(5): 9-11. |
| SU Liming, WANG Pansheng, GU Xueshan. Brief introduction to LNG receiving station process equipment layout and piping[J]. Petrochemical Industry Technology, 2022, 29(5): 9-11. | |
| 10 | 金光, 李亚军. LNG接收站蒸发气体处理工艺[J]. 低温工程, 2011(1): 51-56. |
| JIN Guang, LI Yajun. Boil-off gas treatment in LNG receiving terminal[J]. Cryogenics, 2011(1): 51-56. | |
| 11 | YAO Shouguang, LI Chen, WEI Yue. Design and optimization of a zero carbon emission system integrated with the utilization of marine engine waste heat and LNG cold energy for LNG-powered ships[J]. Applied Thermal Engineering, 2023, 231: 120976. |
| 12 | 陈海平, 黄宇. 液化天然气接收站项目液化天然气气化器选型[J]. 石油化工设备, 2018, 47(3): 18-21. |
| CHEN Haiping, HUANG Yu. Equipment selection of liquefied natural gas vaporizer in liquefied natural gas terminal project[J]. Petro-Chemical Equipment, 2018, 47(3): 18-21. | |
| 13 | 贾劲松. 液化天然气汽化器技术研究进展及发展分析[J]. 化工装备技术, 2022, 43(3): 15-19. |
| JIA Jinsong. Research progress and development analysis of LNG vaporizer technology[J]. Chemical Equipment Technology, 2022, 43(3): 15-19. | |
| 14 | 顾安忠. 液化天然气技术手册[M]. 北京: 机械工业出版社, 2010. |
| GU Anzhong. Technical manual of liquefied natural gas[M]. Beijing: China Machine Press, 2010. | |
| 15 | 温秦芬. 新型空温式气化器纵向翅片管传热性能的模拟研究[D]. 延安: 延安大学, 2022. |
| WEN Qinfen. Simulation study on the heat transfer performance of the longitudinal finned tube of the new air-heated vaporizer[D].Yan’an: Yan’an University, 2022. | |
| 16 | 徐少杰, 高文学, 严荣松, 等. LNG空温式气化器传热问题的研究进展[J]. 天然气工业, 2020, 40(6): 130-140. |
| XU Shaojie, GAO Wenxue, YAN Rongsong, et al. Research progress on the heat transfer of ambient air LNG vaporizers[J]. Natural Gas Industry, 2020, 40(6): 130-140. | |
| 17 | 付子航, 宋坤, 单彤文. 空气热源式气化技术在大型LNG接收终端的应用[J]. 天然气工业, 2012, 32(8): 100-104, 135-136. |
| FU Zihang, SONG Kun, SHAN Tongwen. Application of ambient air-based heating vaporizers in large LNG receiving terminals[J]. Natural Gas Industry, 2012, 32(8): 100-104, 135-136. | |
| 18 | 任乐梅. 液化天然气空温式气化器结霜工况及适用性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
| REN Lemei. Research on frosting conditions and applicability of liquefied natural gas ambient air vaporizer[D]. Harbin: Harbin Institute of Technology, 2021. | |
| 19 | 徐龙春, 邢少郡, 侯立朋, 等. LNG气化站气化装置及基础改造方案[J]. 煤气与热力, 2023, 43(6): 43-45. |
| XU Longchun, XING Shaojun, HOU Lipeng, et al. Renovation scheme of vaporizing device and foundation in LNG vaporizing station[J]. Gas & Heat, 2023, 43(6): 43-45. | |
| 20 | 王玉娟, 李淑一, 陈文杰, 等. LNG浸没燃烧式气化器的传热特性及运行优化[J]. 天然气工业, 2021, 41(6): 134-143. |
| WANG Yujuan, LI Shuyi, CHEN Wenjie, et al. Heat transfer behaviors and operation optimization of LNG submerged combustion vaporizers[J]. Natural Gas Industry, 2021, 41(6): 134-143. | |
| 21 | PAN Jie, MAO Di, BAI Junhua, et al. Thermal behavior calculation and analysis of submerged combustion LNG vaporizer[J]. Applied Thermal Engineering, 2020, 178: 115660. |
| 22 | QI Chao, WANG Wen, WANG Bojie, et al. Performance analysis of submerged combustion vaporizer[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 313-319. |
| 23 | KUNKEL Sven, TEUMER Tobias, Patrick DÖRNHOFER, et al. Determination of heat transfer coefficients in direct contact latent heat storage systems[J]. Applied Thermal Engineering, 2018, 145: 71-79. |
| 24 | 黄涛, 林文胜, 许婧煊. 管束排列方式对LNG冷能发电中间介质气化器丙烷管外凝结影响分析[J]. 真空与低温, 2024, 30(2): 188-195. |
| HUANG Tao, LIN Wensheng, XU Jingxuan. Analysis of influence of tube bundle arrangement on the condensation characteristics outside the tube in intermediate fluid vaporizer for LNG cold energy power generation[J]. Vacuum and Cryogenics, 2024, 30(2): 188-195. | |
| 25 | 钱颂文. 管式换热器强化传热技术[M]. 北京: 化学工业出版社, 2003: 56-59. |
| QIAN Songwen. Heat transfer enhancement technology of tubular heat exchanger[M]. Beijing: Chemical Industry Press, 2003: 56-59. | |
| 26 | PU Liang, QU Zhiguo, BAI Yuheng, et al. Thermal performance analysis of intermediate fluid vaporizer for liquefied natural gas[J]. Applied Thermal Engineering, 2014, 65(1/2): 564-574. |
| 27 | KOKU Oludolapo, PERRY Simon, KIM Jin-Kuk. Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing[J]. Applied Energy, 2014, 114: 250-261. |
| 28 | 李冉, 王武昌, 朱建鲁, 等. LNG-FSRU中间介质再气化工艺优选[J]. 油气储运, 2018, 37(6): 702-709. |
| LI Ran, WANG Wuchang, ZHU Jianlu, et al. Comparison and selection of LNG-FSRU intermediate fluid regasification processes[J]. Oil & Gas Storage and Transportation, 2018, 37(6): 702-709. | |
| 29 | 于国杰. LNG沉浸式燃烧型气化器数值模拟[D]. 大连: 大连理工大学, 2009. |
| YU Guojie. Numerical simulation of LNG submerged-combustion vaporizer[D]. Dalian: Dalian University of Technology, 2009. | |
| 30 | 王玉娟, 刘景俊, 王剑琨, 等. LNG超级开架式海水气化器传热特性模拟优化[J]. 天然气化工(C1化学与化工), 2021, 46(1): 113-120. |
| WANG Yujuan, LIU Jingjun, WANG Jiankun, et al. Simulation and optimization on heat transfer characteristics of LNG SuperORV[J]. Natural Gas Chemical Industry, 2021, 46(1): 113-120. | |
| 31 | 韦刘轲, 朱为明. LNG用大型开架式气化器[J]. 石油科技论坛, 2017, 36(S1): 160-162, 202. |
| WEI Liuke, ZHU Weiming. Large-scale open rack vaporiser in LNG terminal[J]. Petroleum Science and Technology Forum, 2017, 36(S1): 160-162, 202. | |
| 32 | 贺美玲. SuperORV传热管传热特性的数值模拟研究[D]. 西安: 西安石油大学, 2016. |
| HE Meiling. Study on numerical simulation with the heat transfer characteristics of SuperORV heat transfer tube[D]. Xi’an: Xi’an Shiyou University, 2016. | |
| 33 | 陈永东, 陈学东. LNG成套装置换热器关键技术分析[J]. 天然气工业, 2010, 30(1): 96-100, 147-148. |
| CHEN Yongdong, CHEN Xuedong. A technical analysis of heat exchangers in LNG plants and terminals[J]. Natural Gas Industry, 2010, 30(1): 96-100, 147-148. | |
| 34 | MORIMOTO N, YAMAMOTO S, YAMASAKI Y, et al. Development and practical application of a high performance open-rack LNG vaporizer (SuperORV)[R]. Osaka Gas Co. Ltd, 2003. |
| 35 | YAMAZAKI K, SHIMOKAWATOKO T, YAMASAKI Y, et al. Development of a new type of open rack LNG vaporizer[R]. Osaka Gas Co. Ltd. & Kobe Steel Ltd., 1998. |
| 36 | 邓志安, 姜晨薇, 张雪婷, 等. 超级开架式气化器新型传热管内流场及对流换热的数值模拟[J]. 天然气工业, 2016, 36(4): 90-95. |
| DENG Zhian, JIANG Chenwei, ZHANG Xueting, et al. Numerical simulation analysis on the flow field and convection heat transfer in a new heat transfer tube of SuperORV[J]. Natural Gas Industry, 2016, 36(4): 90-95. | |
| 37 | 王萌, 金滔, 汤珂, 等. 超级开架式气化器传热管换热过程的数值模拟分析[J]. 天然气工业, 2013, 33(6): 102-107. |
| WANG Meng, JIN Tao, TANG Ke, et al. Numerical simulation analysis of a heat transfer tube in SuperORV[J]. Natural Gas Industry, 2013, 33(6): 102-107. | |
| 38 | 苏厚德. 开架式气化器流动与传热特性及特征参数研究[D]. 兰州: 兰州理工大学, 2019. |
| SU Houde. Research on characteristics of flow and heat transfer and characteristic parameters for open-rack vaporizer (ORV)[D].Lanzhou: Lanzhou University of Technology, 2019. | |
| 39 | 周宁, 陈力, 吕孝飞, 等. 大型LNG储罐连续泄漏扩散过程影响因素的分析[J]. 化工进展, 2019, 38(10): 4423-4436. |
| ZHOU Ning, CHEN Li, Xiaofei LYU, et al. Analysis on influencing factors of LNG continuous release & dispersion process from large scale tank[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4423-4436. | |
| 40 | 王涛, 张晓兵, 刘哲, 等. 开架式气化器换热管束损伤机理及最优更换周期分析[J]. 石油化工设备技术, 2024, 45(1): 30-34, 69-70. |
| WANG Tao, ZHANG Xiaobing, LIU Zhe, et al. Analysis of damage mechanism and optimal replacement cycle of ORV heat exchange tube bundle[J]. Petrochemical Equipment Technology, 2024, 45(1): 30-34, 69-70. | |
| 41 | 王金昌. LNG开架式海水气化器设计选材[J]. 油气田地面工程, 2013, 32(10): 72-73. |
| WANG Jinchang. Design and material selection of LNG open-frame seawater gasifier[J]. Oil-Gas Field Surface Engineering, 2013, 32(10): 72-73. | |
| 42 | 杨柳, 朱科. LNG装置内气化过程中气液两相流动现象研究[J]. 煤气与热力, 2017, 37(12): 53-57. |
| YANG Liu, ZHU Ke. Study on gas-liquid two-phase flow during vaporizing in LNG device[J]. Gas & Heat, 2017, 37(12): 53-57. | |
| 43 | REZAEI Amir Abbas, BASHARHAGH Masoud Zia, YOUSEFI Touraj. Free convection heat transfer from a horizontal fin attached cylinder between confined nearly adiabatic walls[J]. Experimental Thermal and Fluid Science, 2010, 34(2): 177-182. |
| 44 | 成赫, 巨永林, 傅允准. 开架式气化器竖直圆管内超临界氮换热实验研究[J]. 制冷学报, 2020, 41(6): 133-139. |
| CHENG He, JU Yonglin, FU Yunzhun. Experiment on heat transfer characteristics of supercritical nitrogen in vertical tube for open rack vaporizer[J]. Journal of Refrigeration, 2020, 41(6): 133-139. | |
| 45 | CHAO Youchuang, LU Yongjie, YUAN Hao. On reactive thin liquid films falling down a vertical cylinder[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118942. |
| 46 | XUE Ting, RUAN Fangjun, WANG Zhili. Investigation on wave morphology and temperature distribution of falling liquid film in a vertical tube[J]. Flow Measurement and Instrumentation, 2023, 90: 102325. |
| 47 | GANIC E N, ROPPO M N. An experimental study of falling liquid film breakdown on a horizontal cylinder during heat transfer[J]. Journal of Heat Transfer, 1980, 102(2): 342-346. |
| 48 | RAMADAN Zaher, PARK Chan Woo. Hydrodynamic behavior of liquid falling film over horizontal tubes: Effect of hydrophilic circular surface on liquid film thickness and heat transfer[J]. Case Studies in Thermal Engineering, 2021, 24: 100821. |
| 49 | 蒋章焰, 马同泽, 赵嘉琪, 等. 垂直管外降落液膜的流动和传热特性[J]. 工程热物理学报, 1988, 9(1): 70-74. |
| JIANG Zhangyan, MA Tongze, ZHAO Jiaqi, et al. Hydrodynamics and heat transfer in thin water films falling down the outside of a vertical tube[J]. Journal of Engineering Thermophysics, 1988, 9(1): 70-74. | |
| 50 | CHENG He, JU Yonglin, FU Yunzhun. Experimental study on heat transfer characteristics of cooling falling film outside a vertical tube in open rack vaporizer[J]. Applied Thermal Engineering, 2020, 172: 115187. |
| 51 | 吕国政, 张引弟, 辛玥, 等. 超级开架式气化器加热段的数值模拟研究[J]. 低温与超导, 2020, 48(11): 64-70. |
| Guozheng LYU, ZHANG Yindi, XIN Yue, et al. Numerical simulation of heating section of super open rack vaporizer[J]. Cryogenics & Superconductivity, 2020, 48(11): 64-70. | |
| 52 | 李仲珍, 郭少龙, 陶文铨. 超临界LNG管内流动与换热特性研究[J]. 工程热物理学报, 2013, 34(12): 2314-2317. |
| LI Zhongzhen, GUO Shaolong, TAO Wenquan. Studies of supercritical convective heat transfer of LNG in tube[J]. Journal of Engineering Thermophysics, 2013, 34(12): 2314-2317. | |
| 53 | 粘权鑫, 郭少龙, 方文振, 等. 液化天然气浸没燃烧式气化器数值模拟方法研究[J]. 西安交通大学学报, 2016, 50(1): 67-71, 114. |
| NIAN Quanxin, GUO Shaolong, FANG Wenzhen, et al. Numerical simulation on liquefied natural gas submerged combustion vaporizer[J]. Journal of Xi’an Jiaotong University, 2016, 50(1): 67-71, 114. | |
| 54 | JIN T, WANG M, TANG K. Simulation and performance analysis of a heat transfer tube in SuperORV[J]. Cryogenics, 2014, 61: 127-132. |
| 55 | 魏念鹰. LNG接收站开架式气化器海水流量优化与实践[J]. 化工管理, 2020(13): 210-211. |
| WEI Nianying. Optimization and practice of seawater flow rate of open-frame gasifier in LNG receiving station[J]. Chemical Enterprise Management, 2020(13): 210-211. | |
| 56 | 郭勇男. 海水开架式气化器的运行与维护[J]. 石化技术, 2023, 30(7): 15-17. |
| GUO Yongnan. Operation and maintenance of seawater open-rack vaporizer[J]. Petrochemical Industry Technology, 2023, 30(7): 15-17. | |
| 57 | 周华, 田士章, 朱乾壮, 等. LNG接收站开架式气化器的最大操作负载[J]. 油气储运, 2013, 32(6): 583-586, 593. |
| ZHOU Hua, TIAN Shizhang, ZHU Qianzhuang, et al. Max operating load of open rack vaporizer in a LNG receiving terminal[J]. Oil & Gas Storage and Transportation, 2013, 32(6): 583-586, 593. | |
| 58 | 仇德朋, 郭雷, 徐国峰, 等. LNG接收站中开架式气化器(open rack vaporizer)运行分析[J]. 山东化工, 2013, 42(10): 103-109. |
| QIU Depeng, GUO Lei, XU Guofeng, et al. Operation analysis of open rack vaporizer in LNG terminal[J]. Shandong Chemical Industry, 2013, 42(10): 103-109. | |
| 59 | 孙启迪, 陈叔平, 姚淑婷, 等. 低温开架式气化器表面结冰数值模拟[J]. 低温与超导, 2016, 44(3): 16-19, 54. |
| SUN Qidi, CHEN Shuping, YAO Shuting, et al. Numerical simulation of freezing on the surface of ORV[J]. Cryogenics & Superconductivity, 2016, 44(3): 16-19, 54. | |
| 60 | HALDAR S C, KOCHHAR G S, MANOHAR K, et al. Numerical study of laminar free convection about a horizontal cylinder with longitudinal fins of finite thickness[J]. International Journal of Thermal Sciences, 2007, 46(7): 692-698. |
| 61 | QI Chao, YI Chongchong, WANG Bojie, et al. Thermal performance analysis and the operation method with low temperature seawater of super open rack vaporizer for liquefied natural gas[J]. Applied Thermal Engineering, 2019, 150: 61-69. |
| 62 | 许燕, 马敏吉, 朱明, 等. 海水开架式气化器运行工况研究[J]. 石油与天然气化工, 2019, 48(4): 57-60, 68. |
| XU Yan, MA Minji, ZHU Ming, et al. Research of the open rack vaporizer operation[J]. Chemical Engineering of Oil & Gas, 2019, 48(4): 57-60, 68. | |
| 63 | SU Houde, YU Shurong, FAN Jianling, et al. Numerical simulation of gasification process on rib-tube of open rack vaporizer[J]. Journal of Computers, 2014, 9(2): 301-307. |
| 64 | HISADA Norihiro, SEKIGUCHI Masaru. Design and analysis of open rack LNG vaporizer[C]//ASME/JSME 2004 Pressure Vessels and Piping Conference, July 25-29, 2004, San Diego, California, USA. 2008: 97-104. |
| 65 | CHENG He, JU Yonglin, FU Yunzhun. Experimental and simulation investigation on heat transfer characteristics of supercritical nitrogen in a new rib tube of open rack vaporizer[J]. International Journal of Refrigeration, 2020, 111: 103-112. |
| 66 | 张尚文. 液化天然气开架式气化器工艺研究和设计[J]. 石油化工设备, 2012, 41(3): 25-29. |
| ZHANG Shangwen. Process study and design of liquefied natural gas open rack vaporizer[J]. Petro-Chemical Equipment, 2012, 41(3): 25-29. | |
| 67 | YANG Peng, ZHANG Hongwei, ZHENG Yongyu, et al. Investigation and optimization of heat transfer performance of a spirally corrugated tube using the Taguchi method[J]. International Communications in Heat and Mass Transfer, 2021, 127: 105577. |
| 68 | MARZOUK S A, ABOU AL-SOOD M M, EL-SAID Emad M S, et al. A comprehensive review of methods of heat transfer enhancement in shell and tube heat exchangers[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(15): 7539-7578. |
| 69 | SU Houde, YU Shurong, FAN Jianling, et al. Numerical analysis on rib-tubes of seawater open rack vaporizer with the spoiler lever[J]. Polish Maritime Research, 2017, 24(s2): 14-21. |
| 70 | 朱冬生, 钱颂文. 强化传热技术及其设计应用[J]. 化工装备技术, 2000, 21(6): 1-9. |
| ZHU Dongsheng, QIAN Songwen. Enhanced heat transfer technology and its design application[J]. Chemical Equipment Technology, 2000, 21(6): 1-9. | |
| 71 | HAJABDOLLAHI Zahra, HAJABDOLLAHI Hassan, KIM Kyung Chun. Heat transfer enhancement and optimization of a tube fitted with twisted tape in a fin-and-tube heat exchanger[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(3): 1015-1027. |
| 72 | 潘杰, 白俊华, 张丽, 等. 超级开架式气化器传热管传热特性数值计算[J]. 热能动力工程, 2018, 33(3): 15-22. |
| PAN Jie, BAI Junhua, ZHANG Li, et al. Numerical calculation on heat transfer characteristics of heat transfer tube in super open rack vaporizer[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(3): 15-22. | |
| 73 | DENG Zhian, HUI Kai, ZHANG Yan, et al. Numerical simulation analysis of the flow field and convective heat transfer in new super open rack vaporizer[J]. Applied Thermal Engineering, 2016, 106: 721-730. |
| 74 | MAGHRABIE Hussein M, ATTALLA M, MOHSEN Abrar A A. Performance of a shell and helically coiled tube heat exchanger with variable inclination angle: Experimental study and sensitivity analysis[J]. International Journal of Thermal Sciences, 2021, 164: 106869. |
| 75 | NAPHON Paisarn. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert[J]. International Communications in Heat and Mass Transfer, 2006, 33(2): 166-175. |
| 76 | ROGALA Zbigniew, BRENK Arkadiusz, MALECHA Ziemowit. Theoretical and numerical analysis of freezing risk during LNG evaporation process[J]. Energies, 2019, 12(8): 1426. |
| 77 | CHENG He, JU Yonglin, FU Yunzhun. Thermal performance calculation with heat transfer correlations and numerical simulation analysis for typical LNG open rack vaporizer[J]. Applied Thermal Engineering, 2019, 149: 1069-1079. |
| 78 | 张琪, 任金平, 于春柳, 等. 开架式气化器预冷过程海水膜传热分析[J]. 低温与超导, 2022, 50(3): 94-98. |
| ZHANG Qi, REN Jinping, YU Chunliu, et al. Heat exchange analysis of the water film on precooling process of open rack vaporizers[J]. Cryogenics & Superconductivity, 2022, 50(3): 94-98. | |
| 79 | SMITH R V, EDMONDS D K, BRENTARI E G F, et al. Analysis of the frost phenomena on a cryo-surface[C]//Advances in Cryogenic Engineering. Boston: Springer, 1964: 88-97. |
| 80 | SUN Biao, GHATAGE Swapnil, EVANS Geoffrey M, et al. Dynamic study of frost formation on cryogenic surface[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119372. |
| 81 | HWANG Jieun, CHO Keumnam. Numerical prediction of frost properties and performance of fin-tube heat exchanger with plain fin under frosting[J]. International Journal of Refrigeration, 2014, 46: 59-68. |
| [1] | 孙雅娟, 段思宇, 张宏, 周冬冬, 路广军, 马志斌. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展, 2025, 44(3): 1739-1748. |
| [2] | 王奇, 张乾, 杨凯, 高晨明, 孙岳鹏, 黄伟. 煤气化渣提炭分质用于橡胶补强填充料[J]. 化工进展, 2025, 44(3): 1749-1757. |
| [3] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [4] | 刘新维, 高珊, 王红涛, 王建成. 气化细渣、铝灰的活化及其吸附性能[J]. 化工进展, 2025, 44(1): 558-571. |
| [5] | 刘传磊, 陈宇翔, 郭冠初, 赵起越, 姜豪, 孙辉, 沈本贤. 烷氧基丙胺类新型溶剂分子设计及其脱除高酸性天然气中硫醇[J]. 化工进展, 2025, 44(1): 184-191. |
| [6] | 徐晴晴, 张璇, 赵瑞东, 熊鑫, 蒋璐朦, 禹胜阳. 基于贝叶斯网络的掺氢管道泄漏风险评价方法[J]. 化工进展, 2024, 43(S1): 61-70. |
| [7] | 赵梦磊, 赵军, 鲁鸿滨, 陶少辉, 赵文英, 项曙光. 基于吉布斯自由能最小化法煤气化反应器模型开发及应用[J]. 化工进展, 2024, 43(9): 4793-4799. |
| [8] | 崔祎, 李孟原, 杨路, 李海东, 张奇琪, 常承林, 王彧斐. 采用扭曲片内插件的管壳式换热器自动设计新方法[J]. 化工进展, 2024, 43(9): 4824-4832. |
| [9] | 陈巨辉, 王振名, 李丹, 王柏森, ZHURAVKOV Michael, SIARHEI Lapatsin, 于广滨. 不同含水率下的生活垃圾气化特性模拟[J]. 化工进展, 2024, 43(9): 4900-4908. |
| [10] | 张玉凤, 庞煜骞, 裴浩楠, 樊小青. 三种朝向链基有机骨架对天然气中C2~C3的分离[J]. 化工进展, 2024, 43(9): 5185-5192. |
| [11] | 丁路, 王培尧, 孔令学, 白进, 于广锁, 李文, 王辅臣. 煤气化过程反应模型研究进展[J]. 化工进展, 2024, 43(7): 3593-3612. |
| [12] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
| [13] | 马栋, 解桂林, 田治华, 王勤辉, 张建国, 宋慧林, 钟晋. 流化床中煤气化细渣高温还原磷石膏过程[J]. 化工进展, 2024, 43(6): 3479-3491. |
| [14] | 李亚男, 郭凯, 王嘉琪, 武亚宁. 煤气化渣活化过二硫酸盐和过一硫酸盐降解苯酚的比较[J]. 化工进展, 2024, 43(6): 3503-3512. |
| [15] | 王欣宇, 王超, 张梦娟, 刘方正, 李晗旸, 王正林, 贾鑫, 宋兴飞, 许光文, 韩振南. 松木颗粒流态化两段气化制备清洁燃气的工艺稳定性验证[J]. 化工进展, 2024, 43(5): 2576-2586. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |