化工进展 ›› 2024, Vol. 43 ›› Issue (7): 4032-4042.DOI: 10.16085/j.issn.1000-6613.2023-0960
• 资源与环境化工 • 上一篇
李小龙1(), 李军状1, 郑成强1, 周道斌1, 段玖祥1, 朱法华2, 魏晗1
收稿日期:
2023-06-12
修回日期:
2023-08-02
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
李小龙
作者简介:
李小龙(1988—),男,硕士,高级工程师,研究方向为大气污染防治。E-mail:qianyoushun@163.com。
基金资助:
LI Xiaolong1(), LI Junzhuang1, ZHENG Chengqiang1, ZHOU Daobin1, DUAN Jiuxiang1, ZHU Fahua2, WEI Han1
Received:
2023-06-12
Revised:
2023-08-02
Online:
2024-07-10
Published:
2024-08-14
Contact:
LI Xiaolong
摘要:
“双碳”背景下,随着国家对碳排放监测准确度要求的提高,作为参比方法的烟气流速与流量手工监测标准方法急需进一步完善。针对此情况,从烟道测量位置要求、测量点的布置及测量方法等方面,综述了当前国内外烟气流速与流量手工监测方法的现状,并在此基础上提出了我国监测方法面临的问题及完善方向。关于测量位置,各国标准均对测量位置与流动扰动的距离有具体要求,细节方面存在一定差异,与美国、欧洲和ISO标准相比,我国标准缺少对测量位置气流方向及流场均匀性检查验证的具体规定。关于测量点,美国标准中测量点数的确定方法与各国标准差别较大,我国标准则与欧洲和ISO标准相似,各国标准中测量点的布置均采用网格法。关于流速与流量测量方法,我国标准制定方面存在明显差距,尤其缺少如提高测量结果准确度的三维或二维皮托管法、降低测量误差的壁面调整系数测量法及评价结果准确度的针对性测量不确定度评定方法等。有鉴于此,我国有必要从多方面加快完善烟气流速与流量手工监测标准方法的制定。
中图分类号:
李小龙, 李军状, 郑成强, 周道斌, 段玖祥, 朱法华, 魏晗. 烟气流速与流量手工监测方法现状与探讨[J]. 化工进展, 2024, 43(7): 4032-4042.
LI Xiaolong, LI Junzhuang, ZHENG Chengqiang, ZHOU Daobin, DUAN Jiuxiang, ZHU Fahua, WEI Han. Current situation and discussion of manual monitoring methods of flue gas velocity and flow rate[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4032-4042.
标准方法 | 适用范围及测量位置要求 | 测量点确定及测量位置验证 |
---|---|---|
US EPA Method 1[ | ①烟道直径≥0.30m或截面积≥0.071m2;②气流无涡旋流; ③测量位置至少满足前8后2,必要时,至少满足前2后0.5 | 测量点数:测量位置满足前8后2,直径>0.61m时12个点,直径0.30~0.61m时,圆形和矩形烟道最少为8个和9个点;不满足前8后2,满足前2后0.5,根据 测量点布置:圆形烟道,网格划分等面积圆环垂直相交直径线上,测量点距烟道壁最小距离2.5cm(直径>0.61m)和1.3cm(直径≤0.61m);矩形烟道,网格划分等面积矩形形心上 测量位置涡旋流验证:满足前2后0.5时,使用简化方法S形皮托管,不满足前2后0.5时,使用替代方法三维皮托管,气流平均偏转角度≤20°可接受 |
US EPA Method 1A[ | ①烟道直径0.10~0.30m;②气流无涡旋流;③测量位置满足前16后2,必要时,至少满足前4后0.5 | 测量点数:测量位置满足前16后2时,圆形和矩形烟道最少分别为8个和9个点;不满足前16后2时,根据 测量位置涡旋流验证:同US EPA method 1 |
EN 15259:2007[ | ①测量位置具有代表性且流速预期均匀,至少满足前5后2;②气流与烟道轴线角度小于15°;③无局部反向流;④最小速度取决于流速测量方法(皮托管要求压差大于5Pa);⑤局部最高与最低速度之比小于3∶1 | 测量点数:测量位置经均匀性测试评价,气流均匀或测量平面满足不确定度要求时1个测量点;气流不均匀且测量平面不满足不确定度要求时,网格划分确定最少测量点数(表3),大烟道最多需20个测量点。测量策略流程见 测量点布置:位于网格划分等面积区域中心,测量点距烟道壁最小距离5cm。圆形烟道的测量点位于两条相交的直径线上,存在是否在烟道中心布点两种方法。矩形烟道的测量平面被平行于烟道边的线分成相等的区域,测量点位于每个区域中心 测量位置气流偏转检查:使用皮托管在每个测量点检查涡流与烟道轴线流向的角度 |
ISO 10780:1994[ | ①烟道截面积不小于0.07m2;②满足前5后2,若测量位置接近排口,需满足前5后5,且烟道形状和截面积恒定;③皮托管表面气流雷诺数≥1200,皮托管差压大于5Pa,气流速度范围5~50m/s;④测量断面任一点,涡流与烟道轴线角度不超过±15°;⑤不得有规则循环压力波动,压力波动不超过24Pa;⑥圆形烟道两条垂直直径线上平均速度差不超过所有流速测 量平均值的5%,若超过,需增加测量点或选择新测量位置; ⑦无任何逆向流;⑧各测量点的绝对温度差不超过断面平均温度的5% | 测量点数:根据烟道大小确定最少测量点数,见表3,圆形道和矩形烟道最多分别为17和16个测量点 测量点布置:根据测量点数划分后的等面积网格的中心上,测量点距烟道壁距离不小于2cm,圆形和矩形烟道的具体布置方法与EN 15259: 2007相似 测量位置涡流检查:使用皮托管在每个测量点检查涡流与烟道轴线流向的角度 |
表1 国外标准方法测量位置和测量点的确定
标准方法 | 适用范围及测量位置要求 | 测量点确定及测量位置验证 |
---|---|---|
US EPA Method 1[ | ①烟道直径≥0.30m或截面积≥0.071m2;②气流无涡旋流; ③测量位置至少满足前8后2,必要时,至少满足前2后0.5 | 测量点数:测量位置满足前8后2,直径>0.61m时12个点,直径0.30~0.61m时,圆形和矩形烟道最少为8个和9个点;不满足前8后2,满足前2后0.5,根据 测量点布置:圆形烟道,网格划分等面积圆环垂直相交直径线上,测量点距烟道壁最小距离2.5cm(直径>0.61m)和1.3cm(直径≤0.61m);矩形烟道,网格划分等面积矩形形心上 测量位置涡旋流验证:满足前2后0.5时,使用简化方法S形皮托管,不满足前2后0.5时,使用替代方法三维皮托管,气流平均偏转角度≤20°可接受 |
US EPA Method 1A[ | ①烟道直径0.10~0.30m;②气流无涡旋流;③测量位置满足前16后2,必要时,至少满足前4后0.5 | 测量点数:测量位置满足前16后2时,圆形和矩形烟道最少分别为8个和9个点;不满足前16后2时,根据 测量位置涡旋流验证:同US EPA method 1 |
EN 15259:2007[ | ①测量位置具有代表性且流速预期均匀,至少满足前5后2;②气流与烟道轴线角度小于15°;③无局部反向流;④最小速度取决于流速测量方法(皮托管要求压差大于5Pa);⑤局部最高与最低速度之比小于3∶1 | 测量点数:测量位置经均匀性测试评价,气流均匀或测量平面满足不确定度要求时1个测量点;气流不均匀且测量平面不满足不确定度要求时,网格划分确定最少测量点数(表3),大烟道最多需20个测量点。测量策略流程见 测量点布置:位于网格划分等面积区域中心,测量点距烟道壁最小距离5cm。圆形烟道的测量点位于两条相交的直径线上,存在是否在烟道中心布点两种方法。矩形烟道的测量平面被平行于烟道边的线分成相等的区域,测量点位于每个区域中心 测量位置气流偏转检查:使用皮托管在每个测量点检查涡流与烟道轴线流向的角度 |
ISO 10780:1994[ | ①烟道截面积不小于0.07m2;②满足前5后2,若测量位置接近排口,需满足前5后5,且烟道形状和截面积恒定;③皮托管表面气流雷诺数≥1200,皮托管差压大于5Pa,气流速度范围5~50m/s;④测量断面任一点,涡流与烟道轴线角度不超过±15°;⑤不得有规则循环压力波动,压力波动不超过24Pa;⑥圆形烟道两条垂直直径线上平均速度差不超过所有流速测 量平均值的5%,若超过,需增加测量点或选择新测量位置; ⑦无任何逆向流;⑧各测量点的绝对温度差不超过断面平均温度的5% | 测量点数:根据烟道大小确定最少测量点数,见表3,圆形道和矩形烟道最多分别为17和16个测量点 测量点布置:根据测量点数划分后的等面积网格的中心上,测量点距烟道壁距离不小于2cm,圆形和矩形烟道的具体布置方法与EN 15259: 2007相似 测量位置涡流检查:使用皮托管在每个测量点检查涡流与烟道轴线流向的角度 |
标准方法 | 适用范围及测量位置要求 | 测量点确定及测量位置验证 |
---|---|---|
GB/T 16157—1996[ | ①测量位置优先选择垂直管段,避开烟道弯头和断面急剧变化的部位;②满足前6后3 | 测量点数:测量位置满足前6后3时,根据烟道大小进行网格划分确定测量点数(表3),至多20个点;不满足前6后3应增加测量线和测量点 测量点布置:圆形烟道,等面积圆环垂直相交的直径线上,直径<0.3m满足最优测量位置要求时,取烟道中心为测量点,测量点距烟道壁最小距离2.5cm;矩形烟道,根据测量点数量划分等面积矩形形心上,烟道截面积小于0.1m2满足最优测量位置要求时,断面中心为测量点 |
HJ/T 397—2007[ | ①测量位置优先垂直管段和烟道负压区域,避开烟道弯头和断面急剧变化的部位;②满足前6后3;③断面流速>5m/s;④至少满足前1.5后1.5 | 测量点数:测量位置满足前6后3时,根据烟道大小进行网格划分确定测量点数;不满足前6后3,但至少满足前1.5后1.5时,应适当增加测量点 测量点数量和布置方法与GB/T 16157—1996相同,见表3 |
HJ 75—2017[ | ①测量位置优先垂直管段和烟道负压区域,避开烟道弯头和断面急剧变化的部位;②满足前4后2;③若不满足,选择气流稳定断面,采取措施保证气流分布相对均匀,无紊流,流速相对均方根σr≤0.15;④流速不宜<5m/s | 测量点数:测量位置满足前4后2时,根据烟道大小进行网格划分确定测量点数;不满足前4后2应增加测量线和测量点 测量点数量和布置方法与GB/T 16157—1996相同,见表3 |
T/CAEPI 46—2022[ | ①测量位置断面在规则的圆形、矩形烟道的竖直或水平段,避开烟道弯头和断面急剧变化的部位;②满足前4后2;③若不满足,选择气流稳定断面,采取措施保证气流分布相对均匀,无紊流,流速相对均方根σr≤0.15;④流速宜>5m/s | 测量点数:根据烟道大小进行网格划分确定测量点数 测量点数量和布置方法与GB/T 16157—1996相同,见表3 |
表2 国内标准方法测量位置和测量点的确定
标准方法 | 适用范围及测量位置要求 | 测量点确定及测量位置验证 |
---|---|---|
GB/T 16157—1996[ | ①测量位置优先选择垂直管段,避开烟道弯头和断面急剧变化的部位;②满足前6后3 | 测量点数:测量位置满足前6后3时,根据烟道大小进行网格划分确定测量点数(表3),至多20个点;不满足前6后3应增加测量线和测量点 测量点布置:圆形烟道,等面积圆环垂直相交的直径线上,直径<0.3m满足最优测量位置要求时,取烟道中心为测量点,测量点距烟道壁最小距离2.5cm;矩形烟道,根据测量点数量划分等面积矩形形心上,烟道截面积小于0.1m2满足最优测量位置要求时,断面中心为测量点 |
HJ/T 397—2007[ | ①测量位置优先垂直管段和烟道负压区域,避开烟道弯头和断面急剧变化的部位;②满足前6后3;③断面流速>5m/s;④至少满足前1.5后1.5 | 测量点数:测量位置满足前6后3时,根据烟道大小进行网格划分确定测量点数;不满足前6后3,但至少满足前1.5后1.5时,应适当增加测量点 测量点数量和布置方法与GB/T 16157—1996相同,见表3 |
HJ 75—2017[ | ①测量位置优先垂直管段和烟道负压区域,避开烟道弯头和断面急剧变化的部位;②满足前4后2;③若不满足,选择气流稳定断面,采取措施保证气流分布相对均匀,无紊流,流速相对均方根σr≤0.15;④流速不宜<5m/s | 测量点数:测量位置满足前4后2时,根据烟道大小进行网格划分确定测量点数;不满足前4后2应增加测量线和测量点 测量点数量和布置方法与GB/T 16157—1996相同,见表3 |
T/CAEPI 46—2022[ | ①测量位置断面在规则的圆形、矩形烟道的竖直或水平段,避开烟道弯头和断面急剧变化的部位;②满足前4后2;③若不满足,选择气流稳定断面,采取措施保证气流分布相对均匀,无紊流,流速相对均方根σr≤0.15;④流速宜>5m/s | 测量点数:根据烟道大小进行网格划分确定测量点数 测量点数量和布置方法与GB/T 16157—1996相同,见表3 |
国家 | 标准方法 | 方法 | 适用范围 |
---|---|---|---|
美国 | US EPA method 2[ | S形皮托管法 | 烟道及测量位置满足US EPA Mehod 1要求,见 |
US EPA method 2A[ | 累积体积流量计法 | 小管道,烟温0~50℃ | |
US EPA method 2B[ | 累积体积流量计和碳平衡法 | 汽油焚烧炉废气 | |
US EPA method 2C[ | 标准皮托管法 | 烟道直径0.10~0.30m,截面积0.0081~0.071m2 | |
US EPA method 2D[ | 转子流量计或孔板流量计法 | 小管道 | |
US EPA method 2F[ | 三维皮托管法 | 平均烟气流速≥20ft/sec(约6.1m/s) | |
US EPA method 2G[ | 二维皮托管法 | — | |
US EPA method 2H[ | S形皮托管、三维皮托管、二维皮托管法 | 圆形烟道,与US EPA Method 2、2F和2G联用;烟道直径≥1.0m | |
US EPA CTM 041[ | S形皮托管、三维皮托管、二维皮托管法 | — | |
US EPA CTM 019[ | 翼形风速计法 | 有旋流,烟温0~50℃ | |
US EPA ALT 012[ | 示踪气体法 | 烟道直径≤1ft;烟气流速5~15ft/sec;示踪气体不分层,不与烟气组分反应,烟气组分不干扰分析仪,示踪气体注射入口距上游扰动至少8倍烟道直径,出口测量位置距注射入口至少8倍直径距离,距烟道排口至少2倍直径距离 | |
欧洲和ISO | ISO 10780: 1994[ | L形皮托管(标准皮托管)及S形皮托管法 | 见 |
EN ISO 16911.1: 2013[ | L形皮托管、S形皮托管、翼形风速计、三维皮托管、二维皮托管法、示踪稀释法、示踪时间法、能量换算法 | 烟道及测量位置满足EN 15259:2007要求,见 | |
中国 | GB/T 16157—1996[ | 标准皮托管法、S形皮托管法 | 见 |
HJ/T 397—2007[ | 标准皮托管法、S形皮托管法 | 见 | |
DL/T 2376—2021[ | 三维皮托管法 | 测量位置不满足前2后0.5原则或气流不稳定 |
表4 国内外流速与流量测量标准方法
国家 | 标准方法 | 方法 | 适用范围 |
---|---|---|---|
美国 | US EPA method 2[ | S形皮托管法 | 烟道及测量位置满足US EPA Mehod 1要求,见 |
US EPA method 2A[ | 累积体积流量计法 | 小管道,烟温0~50℃ | |
US EPA method 2B[ | 累积体积流量计和碳平衡法 | 汽油焚烧炉废气 | |
US EPA method 2C[ | 标准皮托管法 | 烟道直径0.10~0.30m,截面积0.0081~0.071m2 | |
US EPA method 2D[ | 转子流量计或孔板流量计法 | 小管道 | |
US EPA method 2F[ | 三维皮托管法 | 平均烟气流速≥20ft/sec(约6.1m/s) | |
US EPA method 2G[ | 二维皮托管法 | — | |
US EPA method 2H[ | S形皮托管、三维皮托管、二维皮托管法 | 圆形烟道,与US EPA Method 2、2F和2G联用;烟道直径≥1.0m | |
US EPA CTM 041[ | S形皮托管、三维皮托管、二维皮托管法 | — | |
US EPA CTM 019[ | 翼形风速计法 | 有旋流,烟温0~50℃ | |
US EPA ALT 012[ | 示踪气体法 | 烟道直径≤1ft;烟气流速5~15ft/sec;示踪气体不分层,不与烟气组分反应,烟气组分不干扰分析仪,示踪气体注射入口距上游扰动至少8倍烟道直径,出口测量位置距注射入口至少8倍直径距离,距烟道排口至少2倍直径距离 | |
欧洲和ISO | ISO 10780: 1994[ | L形皮托管(标准皮托管)及S形皮托管法 | 见 |
EN ISO 16911.1: 2013[ | L形皮托管、S形皮托管、翼形风速计、三维皮托管、二维皮托管法、示踪稀释法、示踪时间法、能量换算法 | 烟道及测量位置满足EN 15259:2007要求,见 | |
中国 | GB/T 16157—1996[ | 标准皮托管法、S形皮托管法 | 见 |
HJ/T 397—2007[ | 标准皮托管法、S形皮托管法 | 见 | |
DL/T 2376—2021[ | 三维皮托管法 | 测量位置不满足前2后0.5原则或气流不稳定 |
1 | 李海洋, 葛志松, 宋进. 固定污染源温室气体排放量直接监测方法综述[J]. 中国测试, 2022, 48(10): 181-188. |
LI Haiyang, GE Zhisong, SONG Jin. Review on the direct monitoring method of greenhouse gas emissions from stationary pollution sources[J]. China Measurement & Test, 2022, 48(10): 181-188. | |
2 | 中华人民共和国生态环境部办公厅. 企业温室气体排放核算方法与报告指南发电设施[R/OL]. 2022-12-19. . |
General Office of the Ministry of Ecology and Environment of the People's Republic of China. Accounting methods and reporting guidelines for greenhouse gas emissions of enterprises-power generation facilities[R/OL]. 2022-12-19. . | |
3 | 中华人民共和国国家发展和改革委员会办公厅. 中国水泥生产企业温室气体排放核算方法与报告指南[R/OL]. 2013-11-01. . |
General Office of the National Development and Reform Commission. Accounting methods and reporting guidelines for greenhouse gas emissions of enterprises-cement production enterprises[R/OL]. 2013-11-01. . | |
4 | 胡永飞, 冯田丰, 姚艳霞, 等. 连续排放监测法在我国发电行业碳交易应用前景探讨[J]. 电力科技与环保, 2019, 35(3): 50-52. |
HU Yongfei, Tianfeng FEN, YAO Yanxia, et al. Discussion on application prospect of power generation industry carbon market using CEMS method[J]. Electric Power Technology and Environmental Protection, 2019, 35(3): 50-52. | |
5 | BRYANT Rodney, BUNDY Matthew, ZONG Ruowen. Evaluating measurements of carbon dioxide emissions using a precision source—A natural gas burner[J]. Journal of the Air & Waste Management Association, 2015, 65(7): 863-870. |
6 | 吴晓蔚, 朱法华, 杨金田, 等. 火力发电行业温室气体排放因子测算[J]. 环境科学研究, 2010, 23(2): 170-176. |
WU Xiaowei, ZHU Fahua, YANG Jintian, et al. Measurements of emission factors of Greenhouse Gas(CO2, N2O) from thermal power plants in China[J]. Research of Environmental Sciences, 2010, 23(2): 170-176. | |
7 | 李海洋, 张亮, 刘幸, 等. 固定排放源烟气流量在线监测技术[J]. 上海计量测试, 2018, 45(5): 6-11. |
LI Haiyang, ZHANG Liang, LIU Xing, et al. Research on on-line monitoring technology of flue gas flow in fixed emission source[J]. Shanghai Measurement and Testing, 2018, 45(5): 6-11. | |
8 | United States Environmental Protection Agency. Part 75: Continuous emissions monitoring requirements[Z/OL]. (2012-06-12). . |
9 | Official Journal of the European Union. Commission Regulation(EU) No 600/2012 of June 2012 on the verification of greenhouse gas emission reports and tonnekilometer reports and the accrediation of verifiers pursuant to Directive 2003/87/EC of the European Parliament and of the Council Text with EEA relevance[Z/OL]. (2012-06-21). . |
10 | 中华人民共和国生态环境部办公厅. 生态环境监测规划纲要(2020—2035年)[R]. 北京: 中华人民共和国生态环境部, 2022-06. |
General Office of the Ministry of Ecology and Environment of the People's Republic of China. Outline of ecological environment monitoring plan (2020—2035)[R]. Beijing: Ministry of Ecology and Environment of the People's Republic of China, 2022-06. | |
11 | 中华人民共和国生态环境部办公厅.碳监测评估试点工作方案[R].北京:中华人民共和国生态环境部, 2021-09-12. |
General Office of the Ministry of Ecology and Environment of the People's Republic of China. Carbon monitoring and assessment pilot work program[Z]. Beijing: Ministry of Ecology and Environment of the People's Republic of China, 2021-09-12. | |
12 | 国家环境保护总局. 固定污染源排气中颗粒物测定与气态污染物采样方法: [S]. 北京: 中国标准出版社, 1996. |
State Environmental Protection Administration of the People's Republic of China. The determination of particulates and sampling methods of gaseous pollutants emitted from exhaust gas of stationary source: [S]. Beijing: Standards Press of China, 1996. | |
13 | 冯真祯, 朱林, 段玖祥. 国内外烟气流速测量标准比较分析[J]. 环境监测管理与技术, 2010, 22(5): 57-62. |
FENG Zhenzhen, ZHU Lin, DUAN Jiuxiang. Comparative analysis of overseas and domestic standards for flue gas velocity measurement[J].The Administration and Technique of Environmental Monitoring, 2010, 22(5): 57-62. | |
14 | 钱丛昊. 燃煤电厂排放烟气流速与气体污染物排放量测量方法的研究[D]. 南京: 东南大学, 2019. |
QIAN Conghao. Research on measurement method of flue gas velocity and gas pollutant emission from coal-fired power plants[D]. Nanjing: Southeast University, 2019. | |
15 | 杨美昭, 张亮, 方立德, 等. 对向测量皮托管国际比对[J]. 计量学报, 2022, 43(8): 1050-1057. |
YANG Meizhao, ZHANG Liang, FANG Lide, et al. International comparison of pitot tube for nulling method[J]. Acta Metrologica Sinica, 2022, 43(8): 1050-1057. | |
16 | 杨阳, 董凤忠, 倪志波, 等. 基于光闪烁法的烟气流速及流量的测量[J]. 光电子·激光, 2014, 25(1): 128-134. |
YANG Yang, DONG Fengzhong, NI Zhibo, et al. Detection of smoke flow velocity and flow rate by optical scintillation[J]. Journal of Optoelectronics·Laser, 2014, 25(1): 128-134. | |
17 | 方昱雯, 张亮, 赵不贿, 等. 6种典型流场中超声流量计校准系数随企业污染源烟气排放量变化研究[J]. 计量学报, 2022, 43(6): 754-760. |
FANG Yuwen, ZHANG Liang, ZHAO Buhui, et al. Research on change of calibration coefficient of ultrasonic flowmeter with the Amount of enterprise pollution source flue gas in six typical flow fields[J]. Acta Metrologica Sinica, 2022, 43(6): 754-760. | |
18 | United States Environmental Protection Agency(U. S. EPA). Sample and velocity traverses for stationary sources: Method 1 [S].Washington, D.C.: U.S. EPA, 2020-04-28. |
19 | United States Environmental Protection Agency(U. S. EPA) .Sample and velocity traverses for stationary sources with small stacks or ducts:Method 1A [S].Washington, D.C.: U.S. EPA, 2017-08-03. |
20 | European Committee for Standardization(CEN). Air quality-measurement of stationary source emissions-requirements for measurement sections and sites and for the measurement objective, plan and report: EN 15259: 2007 [S]. Brussels: CEN, 2007-10. |
21 | International Organization for Standardization(ISO). Stationary source emissions—Measurement of velocity and volume flowrate of gas streams in ducts: [S]. Switzerland: ISO, 1994-11-15. |
22 | 中华人民共和国环境保护部. 固定源废气监测技术规范: [S]. 北京: 中国环境科学出版社, 2008. |
Ministry of Environmental Protection of the People's Republic of China. Technical specifications for emission monitoring of stationary source: [S]. Beijing: China Environmental Science Press,2008. | |
23 | 中华人民共和国环境保护部. 固定污染源烟气(SO2、NOx、颗粒物)排放连续监测技术规范: [S]. 北京: 中国环境科学出版社, 2018. |
Ministry of Environmental Protection of the People's Republic of China. Specifications for continuous emissions monitoring of SO2, NOxand particulate matter in the flue gas emitted from stationary sources: [S]. Beijing: China Environmental Science Press, 2018. | |
24 | 中国环境保护产业协会. 固定污染源废气排放口监测点位设置技术规范: T/CAEPI 46—2022 [S]. 北京:中国环境科学出版社, 2022. |
China Association of Environmental Protection Industry. Specifications for monitoring point setting of stationary source emission point: T/CAEPI 46—2022 [S]. Beijing: China Environmental Science Press, 2022. | |
25 | United States Environmental Protection Agency(U. S. EPA). Determination of stack gas velocity and volumetric flow rate (types pitot tube): Method 2 [S]. Washington, D.C.: U.S. EPA, 2017-08-02. |
26 | United States Environmental Protection Agency(U. S. EPA). Direct measurement of gas volume through pipes and small ducts:Method 2A [S].Washington, D.C.: U.S. EPA, 2017-08-03. |
27 | United States Environmental Protection Agency(U. S. EPA). Determination of exhaust gas volume flow rate from gasoline vapor incinerators: Method 2B [S]. Washington, D.C.: U.S. EPA, 2019-01-14. |
28 | United States Environmental Protection Agency(U. S. EPA). Determination of gas velocity and volumetric flow rate in small stacks or ducts (standard pitot tube): Method 2C [S]. Washington, D.C.: U.S. EPA, 2017-08-03. |
29 | United States Environmental Protection Agency(U. S. EPA). Measurement of gas volume flow rates in small pipes and ducts: Method 2D [S]. Washington, D.C.: U.S. EPA, 2017-08-03. |
30 | United States Environmental Protection Agency(U. S. EPA). Determination of stack gas velocity and volumetric flow rate with three-dimensional probes: Method 2F [S]. Washington, D.C.: U.S. EPA, 2017-08-03. |
31 | United States Environmental Protection Agency(U. S. EPA). Determination of stack gas velocity and volumetric flow rate with two-dimensional probes: Method 2G [S]. Washington, D.C.: U.S. EPA, 2017-08-02. |
32 | United States Environmental Protection Agency(U. S. EPA). Determination of stack gas velocity taking into account velocity decay near the stack wall: Method 2H [S].Washington, D.C.: U.S. EPA, 2017-08-03. |
33 | United States Environmental Protection Agency(U. S. EPA). Determination of volumetric gas flow in rectangular duct or stacks taking into account velocity decay near the stack or duct walls: CTM 041 [S]. Washington, D.C.: U.S. EPA, 2003-01. |
34 | United States Environmental Protection Agency(U. S. EPA). Gas velocity and volumetric flowrate under cyclonic flow conditions: CTM 019 [S]. Washington, D.C.: U.S. EPA, 1986-06. |
35 | United States Environmental Protection Agency(U. S. EPA). Alternative stack gas vol flow rated determination: ALT 012 [S]. Washington, D.C.: U.S. EPA, 1994-05-23. |
36 | European Committee for Standardization. Stationary source emissions—Manual and automatic determination of velocity and volumen flow rate in ducts-Part1: Manual reference method: EN [S]. Brussels: CEN, 2013-03-01. |
37 | 国家能源局. 火电厂烟气二氧化碳排放连续监测技术规范: [S]. 北京: 中国电力出版社, 2022. |
National Energy Administration. Specification for continuous emissions monitoring of CO2in the flue gas emitted from thermal power plants: [S]. Beijing: China Electric Power Press, 2022. | |
38 | International Organization for Standardization(ISO). Uncertainty of measurement-Part 3: Guide to the expression of uncertainty in measurement(GUM:1995): Guide 98.3: 2008[S]. Switzerland: ISO, 2008-10. |
39 | International Organization for Standardization(ISO). Air quality—Guidelines for estimating measurement uncertainty: [S]. Switzerland: ISO, 2007-06-15. |
40 | 国家质量监督检验检疫总局. 测量不确定度评定与表示: [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Evaluation and expression of uncertainty in measurement: [S]. Beijing: Standards Press of China, 2013. | |
41 | 国家质量监督检验检疫总局. 用蒙特卡洛法评定测量不确定度: [S]. 北京: 中国质检出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Monte Carlo method for evaluation of measurement uncertainty: [S]. Beijing: China Quality Inspection Press, 2013. | |
42 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 测量不确定度评定和表示: [S]. 北京: 中国标准出版社, 2018. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. Guide to the evaluation and expression of uncertainty in measurement: [S]. Beijing: Standards Press of China, 2018. |
[1] | 胡琼, 孙见君, 涂桥安, 马晨波, 何斌辉, 刘平. 剖分式机械密封技术研究现状及关键问题探讨[J]. 化工进展, 2015, 34(05): 1207-1214. |
[2] | 李丽媛1,2,陈奕1,许中强1,周健1,2,王仰东1,贺鹤勇2,杨为民1. 烃类分子在分子筛中扩散行为研究进展[J]. 化工进展, 2014, 33(03): 655-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |