1 |
孙铭泽, 马宁, 李浩然, 等. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388.
|
|
SUN Mingze, MA Ning, LI Haoran, et al. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium[J]. CIESC Journal, 2022, 73(3): 1379-1388.
|
2 |
李子航, 王占博, 苗政, 等. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
|
|
LI Zihang, WANG Zhanbo, MIAO Zheng, et al. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495.
|
3 |
韩中合, 杜燕, 王智. 有机朗肯循环低温余热回收系统的工质选择[J]. 化工进展, 2014, 33(9): 2279-2285.
|
|
HAN Zhonghe, DU Yan, WANG Zhi. Medium selection of organic Rankine cycle(ORC) in low temperature waste heat[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2279-2285.
|
4 |
高天泽. 跨临界压力下碳氢化合物传热特性实验研究[D]. 大连: 大连理工大学, 2021.
|
|
GAO Tianze. Experimental study on heat transfer characteristics of hydrocarbons at trans-and supercritical pressures[D]. Dalian: Dalian University of Technology, 2021.
|
5 |
崔亚林, 王怀信. R134a超临界压力下管内换热特性实验研究[J]. 中国电机工程学报, 2018, 38(8): 2376-2383, 2547.
|
|
CUI Yalin, WANG Huaixin. In-tube convection heat transfer research of R134a under supercritical pressures[J]. Proceedings of the CSEE, 2018, 38(8): 2376-2383, 2547.
|
6 |
CHENG X, YANG Y H, HUANG S F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128.
|
7 |
JONATHAN Fewster. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[D]. Manchester, North West England, UK: University of Manchester, 1976.
|
8 |
SHEN Zhi, YANG Dong, WANG Siyang, et al. Experimental and numerical analysis of heat transfer to water at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1676-1688.
|
9 |
WANG Han, BI Qincheng, YANG Zhendong, et al. Experimental and numerical investigation of heat transfer from a narrow annulus to supercritical pressure water[J]. Annals of Nuclear Energy, 2015, 80: 416-428.
|
10 |
BISHOP A A, SANDBERG R, TONG L. Forced-convection heat transfer to water at near-critical temperatures and supercritical pressures[C]. Joint Meeting of the American Institute of Chemical Engineers and the British Institution of Chemical Engineers, United States, 1964.
|
11 |
JACKSON J D. Consideration of the heat transfer properties of supercritical pressure water in connection with the cooling of advanced nuclear reactors[C]. Pacific Regional Nuclear Energy Conference, 2002.
|
12 |
YANG Zenan, LUO Xiaobo, WANG Ge, et al. Numerical study on the effects of supercritical CO2-based nanofluid on heat transfer deterioration[J]. Numerical Heat Transfer A: Applications, 2022, 82(5): 193-216.
|
13 |
YUN Rin, HWANG Yunho, RADERMACHER Reinhard. Convective gas cooling heat transfer and pressure drop characteristics of supercritical CO2/oil mixture in a minichannel tube[J]. International Journal of Heat and Mass Transfer, 2007, 50(23/24): 4796-4804.
|
14 |
GU Hongfang, LI Hongzhi, WANG Haijun, et al. Experimental investigation on convective heat transfer from a horizontal miniature tube to methane at supercritical pressures[J]. Applied Thermal Engineering, 2013, 58(1/2): 490-498.
|
15 |
JIANG Peixue, ZHAO Chenru, SHI Runfu, et al. Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4748-4756.
|
16 |
DANG Chaobin, HIHARA Eiji. Numerical study on in-tube laminar heat transfer of supercritical fluids[J]. Applied Thermal Engineering, 2010, 30(13): 1567-1573.
|
17 |
DANG Chaobin, HIHARA Eiji. In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement[J]. International Journal of Refrigeration, 2004, 27(7): 736-747.
|
18 |
YOON Seok Ho, KIM Ju Hyok, HWANG Yun Wook, et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. International Journal of Refrigeration, 2003, 26(8): 857-864.
|
19 |
冯龙龙, 钟珂, 张羽森, 等. 水平管内R1234yf的流动沸腾换热特性[J]. 化工进展, 2022, 41(7): 3502-3509.
|
|
FENG Longlong, ZHONG Ke, ZHANG Yusen, et al. Flow boiling heat transfer characteristics of R1234yf in horizontal microchannel[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3502-3509.
|
20 |
杨梦, 张华, 秦延斌, 等. 混合制冷剂R134a/R1234yf(R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(3): 1182-1189.
|
|
YANG Meng, ZHANG Hua, QIN Yanbin, et al. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf(R513A) and R134a[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1182-1189.
|
21 |
DOBSON M K, CHATO J C. Condensation in smooth horizontal tubes[J]. Journal of Heat Transfer, 1998, 120(1): 193-213.
|
22 |
TANG Liangyou, OHADI Michael, JOHNSON Arthur T. Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410 refrigerants. Part Ⅱ: Design equations[J]. Journal of Enhanced Heat Transfer, 2000, 7(5): 311-325.
|
23 |
CAVALLINI A, CENSI G, DEL COL D, et al. Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube[J]. International Journal of Refrigeration, 2001, 24(1): 73-87.
|
24 |
JIANG Peixue, ZHAO Chenru, LIU Bo. Flow and heat transfer characteristics of R22 and ethanol at supercritical pressures[J]. The Journal of Supercritical Fluids, 2012, 70: 75-89.
|
25 |
KANG Kyoung-Ho, CHANG Soon-Heung. Experimental study on the heat transfer characteristics during the pressure transients under supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 4946-4955.
|
26 |
姜文全,李琳,杨帆,等. 变物性比下无量纲力对超临界压力甲烷混合对流换热影响[J]. 中国石油大学学报(自然科学版), 2022, 46(3): 140-147.
|
|
JIANG Wenquan, LI Lin, YANG Fan, et al. Effects of dimensionless forces on mixed convection heat transfer of supercritical pressure methane under variable thermophysical property ratio[J]. Journal of China University of Petroleum(Edition of Natural Science), 2022, 46(3): 140-147.
|
27 |
宿诗雨,姜文全,李琳,等. U形竖管内超临界甲烷传热异常行为机理研究[J]. 推进技术, 2023, 44(11): 175-182.
|
|
SU Shiyu, JIANG Wenquan, LI Lin, et al. Mechanism analysis of abnormal heat transfer behavior of supercritical methane in a u-tube [J]. Journal of Propulsion Technology, 2023, 44(11): 175-182.
|
28 |
李辉,汝卓霖,邹正平,等. 微小尺度通道内超临界甲烷传热特性研究[J]. 南京航空航天大学学报, 2021, 53(4): 513-520.
|
|
LI Hui, RU Zhuolin, ZOU Zhengping, et al. Investigation on heat transfer characteristic of supercritical methane in a microtube[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 513-520.
|
29 |
谷家扬,陈代飞,魏世松,等. 流道截面形状对超临界甲烷在微通道中流动换热特性影响研究[J]. 舰船科学技术, 2023, 45(13): 53-58.
|
|
GU Jiayang, CHEN Daifei, WEI Shisong, et al. Flow channel cross section shape for supercritical methane in microchannels Study on the influence of flow heat transfer characteristics[J]. Ship Science and Technology, 2023, 45(13): 53-58.
|
30 |
孙会芹,韩昌亮,李泽宇,等. 水平圆管内超临界甲烷非均匀流场的对流传热特性[J]. 哈尔滨理工大学学报, 2021, 26(3): 51-57.
|
|
SUN Huiqin, HAN Changliang, LI Zeyu, et al. Non-uniform flow field of convection heat transfer characteristics of supercritical methane in a horizontal tube[J]. Journal of Harbin University of Science and Technology, 2021, 26(3): 51-57.
|
31 |
PIORO Igor L, KHARTABIL Hussam F, DUFFEY Romney B. Heat transfer to supercritical fluids flowing in channels—Empirical correlations (survey)[J]. Nuclear Engineering and Design, 2004, 230(1/2/3): 69-91.
|
32 |
XIAO Runfeng, TIAN Gui, CHEN Liang, et al. A dimensionless correlation to predict the onset of heat transfer deterioration of supercritical fluids in upward circular tubes[J]. Nuclear Engineering and Design, 2022, 392: 111763.
|