化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1133-1144.DOI: 10.16085/j.issn.1000-6613.2023-0353
• 化工过程与装备 • 上一篇
禹言芳1(), 石博文1, 孟辉波2(), 丁鹏程1, 姚云娟1
收稿日期:
2023-03-08
修回日期:
2023-05-17
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
孟辉波
作者简介:
禹言芳(1979—),女,博士,副教授,研究方向为化工过程强化。E-mail:taroyy@163.com。
基金资助:
YU Yanfang1(), SHI Bowen1, MENG Huibo2(), DING Pengcheng1, YAO Yunjuan1
Received:
2023-03-08
Revised:
2023-05-17
Online:
2024-03-10
Published:
2024-04-11
Contact:
MENG Huibo
摘要:
超轻粉体颗粒由于质量较小,在运输过程中易受气流扰动而飘散,物料的管道气力输送过程不稳定,易发生堵塞。为了研究超轻粉体颗粒在旋流气力输送中气固两相流流动特性,采用计算流体力学与离散单元法(CFD-DEM),对Komax型静态混合器内气固两相流动特性进行数值模拟研究。研究发现,带有Komax型元件的水平管道可以改变颗粒的流动情况,改善了水平管道内颗粒堆积和分布不均匀的现象;分别从颗粒相和流体相的流动状态分析得到元件长径比Ar=3时为最优几何结构;通过正交实验极差分析得到影响气固两相流动特性的因素顺序: 输送气速>颗粒质量流量>颗粒粒径。当元件Ar=3时,颗粒-颗粒和颗粒-管壁的碰撞次数与碰撞强度呈现负相关,结合出口颗粒流分散状态,优选输送气速为3~4m/s;主要考虑输送气速对管内压降的影响,提出了带有Komax型元件的水平管道气力运输过程中压降与输送气速和轴向位置的经验拟合式。
中图分类号:
禹言芳, 石博文, 孟辉波, 丁鹏程, 姚云娟. 基于CFD-DEM算法的气力输送气固两相流特性分析[J]. 化工进展, 2024, 43(3): 1133-1144.
YU Yanfang, SHI Bowen, MENG Huibo, DING Pengcheng, YAO Yunjuan. Characteristics analysis of gas solid two-phase flow in pneumatic conveying based on CFD-DEM algorithm[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1133-1144.
状态 | 参数 | 数值 |
---|---|---|
固相 | 颗粒质量流量/g·s-1 | 2.85 |
颗粒密度/kg·m-3 | 40 | |
颗粒直径/μm | 300 | |
泊松比 | 0.206 | |
剪切模量/Pa | 1×107 | |
颗粒-颗粒恢复系数 | 0.037 | |
颗粒-颗粒静摩擦系数 | 2 | |
颗粒-颗粒滚动摩擦系数 | 0.2 | |
颗粒-有机玻璃恢复系数 | 0.047 | |
颗粒-有机玻璃静摩擦系数 | 0.894 | |
颗粒-有机玻璃滚动摩擦系数 | 0.2 | |
颗粒相时间步长/s | 2×10-7 | |
颗粒入口速度/m·s-1 | 0 | |
气相 | 气体密度/kg·m-3 | 1.225 |
气体黏度/kg·(m·s)-1 | 1.7894×10-5 | |
气体时间步长/s | 2×10-5 |
表1 模拟参数与设置
状态 | 参数 | 数值 |
---|---|---|
固相 | 颗粒质量流量/g·s-1 | 2.85 |
颗粒密度/kg·m-3 | 40 | |
颗粒直径/μm | 300 | |
泊松比 | 0.206 | |
剪切模量/Pa | 1×107 | |
颗粒-颗粒恢复系数 | 0.037 | |
颗粒-颗粒静摩擦系数 | 2 | |
颗粒-颗粒滚动摩擦系数 | 0.2 | |
颗粒-有机玻璃恢复系数 | 0.047 | |
颗粒-有机玻璃静摩擦系数 | 0.894 | |
颗粒-有机玻璃滚动摩擦系数 | 0.2 | |
颗粒相时间步长/s | 2×10-7 | |
颗粒入口速度/m·s-1 | 0 | |
气相 | 气体密度/kg·m-3 | 1.225 |
气体黏度/kg·(m·s)-1 | 1.7894×10-5 | |
气体时间步长/s | 2×10-5 |
平均网格尺寸/mm | 网格数量/万 | 压降/Pa | 误差/% |
---|---|---|---|
1.75 | 5.2 | 15552.030 | — |
2.00 | 4.6 | 15651.335 | 0.06 |
2.25 | 3.9 | 15700.564 | 0.37 |
2.50 | 3.3 | 15709.938 | 1.01 |
表2 网格无关性
平均网格尺寸/mm | 网格数量/万 | 压降/Pa | 误差/% |
---|---|---|---|
1.75 | 5.2 | 15552.030 | — |
2.00 | 4.6 | 15651.335 | 0.06 |
2.25 | 3.9 | 15700.564 | 0.37 |
2.50 | 3.3 | 15709.938 | 1.01 |
序号 | 输送气速/m·s-1 | 颗粒质量流量/g·s-1 | 颗粒直径/μm | 压降/Pa |
---|---|---|---|---|
1 | 3 | 0.85 | 300 | 49.954 |
2 | 3 | 1.85 | 400 | 49.967 |
3 | 3 | 2.85 | 500 | 49.975 |
4 | 4 | 1.85 | 300 | 87.325 |
5 | 4 | 2.85 | 400 | 87.353 |
6 | 4 | 0.85 | 500 | 87.299 |
7 | 5 | 2.85 | 300 | 134.997 |
8 | 5 | 0.85 | 400 | 134.939 |
9 | 5 | 1.85 | 500 | 134.951 |
R' | 84.997 | 0.045 | 0.017 | — |
表3 稀相气力运输的正交实验结果
序号 | 输送气速/m·s-1 | 颗粒质量流量/g·s-1 | 颗粒直径/μm | 压降/Pa |
---|---|---|---|---|
1 | 3 | 0.85 | 300 | 49.954 |
2 | 3 | 1.85 | 400 | 49.967 |
3 | 3 | 2.85 | 500 | 49.975 |
4 | 4 | 1.85 | 300 | 87.325 |
5 | 4 | 2.85 | 400 | 87.353 |
6 | 4 | 0.85 | 500 | 87.299 |
7 | 5 | 2.85 | 300 | 134.997 |
8 | 5 | 0.85 | 400 | 134.939 |
9 | 5 | 1.85 | 500 | 134.951 |
R' | 84.997 | 0.045 | 0.017 | — |
1 | 周甲伟, 荆双喜, 刘瑜. 煤炭颗粒旋流气力输送系统设计与研究[J]. 煤矿机械, 2021, 42(11): 1-4. |
ZHOU Jiawei, JING Shuangxi, LIU Yu. Design and research on swirling flow pneumatic conveying system of coal particle[J]. Coal Mine Machinery, 2021, 42(11): 1-4. | |
2 | 高罗辉, 姚振强, 梁鑫光, 等. 旋流气力输运中水平管道管壁磨损的流体力学仿真与分析[J]. 机械设计与研究, 2012, 28(2): 88-92. |
GAO Luohui, YAO Zhenqiang, LIANG Xinguang, et al. Research for the wall wear of horizontal pipeline in swirling flow pneumatic transport based on the computational fluid dynamics simulation analysis[J]. Machine Design & Research, 2012, 28(2): 88-92. | |
3 | MEINECKE Marvin, KILZER Andreas, WEIDNER Eckhard. Imaging method for mass transport measurements in a two-phase bubbly flow of supercritical CO2 and viscous liquids in a static mixer[J]. The Journal of Supercritical Fluids, 2020, 159: 104757. |
4 | MENG Huibo, HAN Mengqi, YU Yanfang, et al. Numerical evaluations on the characteristics of turbulent flow and heat transfer in the Lightnin static mixer[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119788. |
5 | VALDÉS Juan P, KAHOUADJI Lyes, MATAR Omar K. Current advances in liquid-liquid mixing in static mixers: A review[J]. Chemical Engineering Research and Design, 2022, 177: 694-731. |
6 | SCALA Marco, GAMET Lionel, MALBEC Louis-Marie, et al. Hydrodynamics of gas-liquid dispersion in transparent Sulzer static mixers SMXTM [J]. Chemical Engineering Science, 2020, 213: 115398. |
7 | ARIAN Elias, PAUER Werner. Contributions to the kinetics of the iodide-iodate test reaction for micromixing time calculation with extended incorporation models[J]. Chemical Engineering Science, 2021, 237: 116549. |
8 | AKAR Shima, TAHERI Amin, BAZAZ Razavi, et al. Twisted architecture for enhancement of passive micromixing in a wide range of Reynolds numbers[J]. Chemical Engineering and Processing-Process Intensification, 2021, 160: 108251. |
9 | LIU Baoqing, GAO Pengfei, SUN Ning, et al. Experimental investigation on micromixing characteristics of coaxial mixers in viscous system[J]. The Canadian Journal of Chemical Engineering, 2020, 98(8): 1815-1824. |
10 | GHANEM Akram, LEMENAND Thierry, DELLA VALLE Dominique, et al. Static mixers: Mechanisms, applications, and characterization methods—A review[J]. Chemical Engineering Research and Design, 2014, 92(2): 205-228. |
11 | KIM Gook Hee, Sang Hun WOO, KIM Sang Done, et al. Effect of static mixer internals on hydrodynamics and axial gas mixing characteristics in a circulating fluidized bed[J]. Journal of Chemical Engineering of Japan, 2010, 43(3): 269-274. |
12 | SYNOWIEC Piotr Maria, STEC Magdalena. Analysis of CaF2 precipitation process in the selected static mixers[J]. Journal of Chemistry, 2019, 2019: 6728492. |
13 | Žana ŠARANOVIĆ, Zita ŠEREŠ, ALEKSANDAR Jokić, et al. Reduction of solid content in starch industry wastewater by microfiltration[J]. Starch-Stärke, 2011, 63(2): 64-74. |
14 | DONG Yuancai, Wai Kiong NG, SHEN Shoucang, et al. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers[J]. Colloids and Surfaces B: Biointerfaces, 2012, 94: 68-72. |
15 | Angel Chyi En WE, ARIS Azmi, ZAIN Nor Azimah Mohd, et al. Influence of static mixer on the development of aerobic granules for the treatment of low-medium strength domestic wastewater[J]. Chemosphere, 2021, 263: 128209. |
16 | 宣颖, 刘雪东, 周成奇, 等. 粉体混合过程及搅拌功率的DEM数值模拟和实验[J]. 化工进展, 2021, 40(7): 3598-3607. |
XUAN Ying, LIU Xuedong, ZHOU Chengqi, et al. A discrete element method (DEM) simulation and experimental research on powder mixing process and stirring power[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3598-3607. | |
17 | Filipp GÖBEL, GOLSHAN Shahab, NOROUZI Hamid Reza, et al. Simulation of granular mixing in a static mixer by the discrete element method[J]. Powder Technology, 2019, 346: 171-179. |
18 | BUNKLUARB Noraphon, SAWANGTONG Wannika, KHAJOHNSAKSUMETH Nathnarong, et al. Numerical simulation of granular mixing in static mixers with different geometries[J]. Advances in Difference Equations, 2019, 2019(1): 238. |
19 | Aca JOVANOVIĆ, PEZO Milada, PEZO Lato, et al. DEM/CFD analysis of granular flow in static mixers[J]. Powder Technology, 2014, 266: 240-248. |
20 | PEZO Milada, PEZO Lato, Aca JOVANOVIĆ, et al. DEM/CFD approach for modeling granular flow in the revolving static mixer[J]. Chemical Engineering Research and Design, 2016, 109: 317-326. |
21 | THAKUR R K, VIAL Ch, NIGAM K D P, et al. Static mixers in the process industries—A review[J]. Chemical Engineering Research and Design, 2003, 81(7): 787-826. |
22 | REVATHI D, SARAVANAN K. Experimental studies on hydrodynamic aspects for mixing of non-Newtonian fluids in a Komax static mixer[J]. Chemical Industry and Chemical Engineering Quarterly, 2020, 26(4): 329-335. |
23 | 郎显华, 施永生, 王琳. 改进管道混合器提高高浊水混凝效果[J]. 工业用水与废水, 2006, 37(1): 71-72. |
LANG Xianhua, SHI Yongsheng, WANG Lin. Improving pipeline mixer to improve coagulation effect of highly turbid water[J]. Industrial Water & Wastewater, 2006, 37(1): 71-72. | |
24 | MENG Huibo, MENG Tong, YU Yanfang, et al. Experimental and numerical investigation of turbulent flow and heat transfer characteristics in the Komax static mixer[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123006. |
25 | MAA Y F, HSU C. Liquid-liquid emulsification by static mixers for use in microencapsulation[J]. Journal of Microencapsulation, 1996, 13(4): 419-433. |
26 | 王宗勇, 王亮, 孟辉波. Kenics型静态混合器内分散相液滴破碎和聚结过程的CFD-PBM数值模拟[J]. 过程工程学报, 2021, 21(8): 935-943. |
WANG Zongyong, WANG Liang, MENG Huibo. CFD-PBM numerical simulation on the breakup and coalescence process of dispersed phase droplet in Kenics static mixer[J]. The Chinese Journal of Process Engineering, 2021, 21(8): 935-943. | |
27 | 禹言芳, 李中根, 孟辉波, 等. Lightnin静态混合器内瞬态流场POD分析及混合特性研究[J]. 北京化工大学学报(自然科学版), 2021, 48(4): 19-26. |
YU Yanfang, LI Zhonggen, MENG Huibo, et al. Proper orthogonal decomposition(POD) analysis of the transient flow field and mixing characteristics in a Lightnin static mixer[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2021, 48(4): 19-26. | |
28 | 禹言芳, 王丰, 孟辉波, 等. 旋流静态混合器内瞬态流动特性研究进展[J]. 化工进展, 2013, 32(2): 255-262, 282. |
YU Yanfang, WANG Feng, MENG Huibo, et al. Research progress of the characteristics of instantaneous flow in static mixer with twisted-leaves[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 255-262, 282. | |
29 | 孟辉波, 王建宝, 禹言芳, 等. Q型静态混合器内液滴群分散特性[J]. 过程工程学报, 2022, 22(3): 338-346. |
MENG Huibo, WANG Jianbao, YU Yanfang, et al. Dispersion characteristics of droplets in the Q-type static mixer[J]. The Chinese Journal of Process Engineering, 2022, 22(3): 338-346. | |
30 | HOOMANS B P B, KUIPERS J A M, BRIELS W J, et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach[J]. Chemical Engineering Science, 1996, 51(1): 99-118. |
31 | TSUJI Y, TANAKA T, YONEMURA S. Cluster patterns in circulating fluidized beds predicted by numerical simulation (discrete particle model versus two-fluid model)[J]. Powder Technology, 1998, 95(3): 254-264. |
32 | ZHU H P, ZHOU Z Y, YANG R Y, et al. Discrete particle simulation of particulate systems: Theoretical developments[J]. Chemical Engineering Science, 2007, 62(13): 3378-3396. |
33 | ANSYS Inc. ANSYS FLUENT 2020 User’s Guide[Z]. Pittsburgh: ANSYS Inc., 2020. |
34 | 周海丽. 超轻膨胀石墨颗粒气固两相流动特性的CFD-DEM模拟研究[D]. 秦皇岛: 燕山大学, 2019. |
ZHOU Haili. CFD-DEM simulation of gas-solid two phase flow characteristics of ultra-light expanded graphite particles[D]. Qinhuangdao: Yanshan University, 2019. | |
35 | LAVRINEC A, OROZOVIC O, RAJABNIA H, et al. Velocity and porosity relationships within dense phase pneumatic conveying as studied using coupled CFD-DEM[J]. Powder Technology, 2020, 375: 89-100. |
36 | HOSSEINI Seyyed Hossein, SHOJAEE Saeed, AHMADI Goodarz, et al. Computational fluid dynamics studies of dry and wet pressure drops in structured packings[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1465-1473. |
37 | MENG Huibo, WANG Jianbao, YU Yanfang, et al. CFD-PBM numerical study on liquid-liquid dispersion in the Q-type static mixer[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 18121-18135. |
38 | 杜俊, 胡国明, 方自强, 等. 弯管稀相气力输送CFD-DEM法数值模拟[J]. 国防科技大学学报, 2014, 36(4): 134-139. |
DU Jun, HU Guoming, FANG Ziqiang, et al. Simulation of dilute pneumatic conveying with bends by CFD-DEM[J]. Journal of National University of Defense Technology, 2014, 36(4): 134-139. | |
39 | NARIMATSU C P, FERREIRA M C. Vertical pneumatic conveying in dilute and dense-phase flows: Experimental study of the influence of particle density and diameter on fluid dynamic behavior[J]. Brazilian Journal of Chemical Engineering, 2001, 18(3): 221-232. |
40 | RINOSHIKA Akira, YAN Fei, KIKUCHI Masanori. Experimental study on particle fluctuation velocity of a horizontal pneumatic conveying near the minimum conveying velocity[J]. International Journal of Multiphase Flow, 2012, 40: 126-135. |
41 | HABCHI Charbel, LEMENAND Thierry, DELLA VALLE Dominique, et al. Turbulent mixing and residence time distribution in novel multifunctional heat exchangers-reactors[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(10): 1066-1075. |
42 | 方薪晖, 安海泉, 刘臻, 等. 煤粉掺混煤液化残渣萃余物的气力输送压降特性研究[J]. 煤炭学报, 2020, 45(4): 1510-1518. |
FANG Xinhui, AN Haiquan, LIU Zhen, et al. Experimental research on pressure drop in dense phase pneumatic conveying of pulverized coal blending extract residue of direct coal liquefaction residue[J]. Journal of China Coal Society, 2020, 45(4): 1510-1518. | |
43 | SAATDJIAN E, RODRIGO A J S, MOTA J P B. On chaotic advection in a static mixer[J]. Chemical Engineering Journal, 2012, 187: 289-298. |
[1] | 王超, 曹辉, 马国纪, 叶佳敏, 纪学玲. 基于EMD的螺旋输送机叶片运动速度静电检测方法[J]. 化工进展, 2024, 43(2): 752-759. |
[2] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[3] | 苏茜, 夏志飞, 刘振兴. 基于RBF的油气水段塞流流型超声识别方法[J]. 化工进展, 2024, 43(2): 628-636. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[6] | 齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314. |
[7] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[8] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[9] | 禹言芳, 李毓, 孟辉波, 刘桓辰. Lightnin静态混合器内气液两相混合与传质强化特性[J]. 化工进展, 2023, 42(12): 6180-6190. |
[10] | 乔元, 仇畅, 钱锦远, 干瑞彬, 徐春明, 金志江. 笼式调节阀的冲蚀磨损与空蚀[J]. 化工进展, 2023, 42(10): 5111-5120. |
[11] | 尹少武, 张朝, 康鹏, 韩嘉维, 王立. 硅粉氮化输送床内气固反应过程数值模拟[J]. 化工进展, 2022, 41(5): 2256-2267. |
[12] | 朱明军, 胡大鹏. 操作参数对三相卧螺离心机油水砂分离性能影响模拟及实验分析[J]. 化工进展, 2022, 41(10): 5188-5199. |
[13] | 林伟翔, 苏港川, 陈强, 文键, AKRAPHON Janon, 王斯民. 沉浸式换热器超声强化传热影响因素[J]. 化工进展, 2022, 41(1): 40-51. |
[14] | 王凯, 黄慧, 南翠红, 王跃社, 卢金玲. 油水分层流条件下腐蚀动力学特性模拟[J]. 化工进展, 2021, 40(S2): 40-47. |
[15] | 禹言芳, 陈雅鑫, 孟辉波, 王宗勇, 吴剑华. Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40(S2): 30-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |