1 |
JAMDADE Shubham, GURNANI Rishi, FANG Hanjun, et al. Identifying high-performance metal-organic frameworks for low-temperature oxygen recovery from helium by computational screening[J]. Industrial & Engineering Chemistry Research, 2023, 62(4): 1927-1935.
|
2 |
许光, 李玉宏, 王宗起, 等. 我国氦气资源调查评价进展[J]. 地质学报, 2023, 97(5): 1711-1716.
|
|
XU Guang, LI Yuhong, WANG Zongqi, et al. Progress in investigation and evaluation of helium resources in China[J]. Acta Geologica Sinica, 2023, 97(5): 1711-1716.
|
3 |
马蕾, 张飞飞, 宋志强, 等. 金属有机骨架材料用于吸附分离CH4和N2的研究进展[J]. 化工进展, 2021, 40(9): 5107-5117.
|
|
MA Lei, ZHANG Feifei, SONG Zhiqiang, et al. Development of metal-organic frameworks in adsorptive separation of CH4 and N2 [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5107-5117.
|
4 |
YAN Yaling, SHI Zenan, LI Huilin, et al. Machine learning and in-silico screening of metal-organic frameworks for O2/N2 dynamic adsorption and separation[J]. Chemical Engineering Journal, 2022, 427: 131604.
|
5 |
Pezhman ZARABADI-POOR, MAREK Radek. Metal-organic frameworks for helium recovery from natural gas via N2/He separation: A computational screening[J]. The Journal of Physical Chemistry C, 2019, 123(6): 3469-3475.
|
6 |
席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949.
|
|
XI Guojun, LIU Zihan, LEI Guangping. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC[J]. CIESC Journal, 2022, 73(9): 3940-3949.
|
7 |
韩素英, 韩新华, 曹运祥, 等. 金属有机框架材料HKUST-1吸附分离CH4/N2性能研究[J]. 石油炼制与化工, 2018, 49(5): 43-48.
|
|
HAN Suying, HAN Xinhua, CAO Yunxiang, et al. Adsorption separation of ch4/n2 over metal organic frame material hkust-1 [J]. Petroleum Processing and Petrochemicals, 2018, 49(5): 43-48.
|
8 |
李想, 张佳瑾, 李建伟. 含不饱和金属位点的金属有机骨架材料对14CH4/N2吸附分离行为的分子模拟研究[J]. 化工新型材料, 2021, 49(11): 192-197.
|
|
LI Xiang, ZHANG Jiajin, LI Jianwei. Molecular simulation of adsorption and separation of 14CH4/N2 on MOFs containing open-metal sites[J]. New Chemical Materials, 2021, 49(11): 192-197.
|
9 |
李艳丽, 秦铭杉, 韦冬微, 等. UiO66的氨基化修饰及表征[J]. 天津农学院学报, 2023, 30(1): 59-63.
|
|
LI Yanli, QIN Mingshan, WEI Dongwei, et al. Amination modification and characterization of UiO66[J]. Journal of Tianjin Agricultural University, 2023, 30(1): 59-63.
|
10 |
ZAHID Muhammad, ZHANG Dongxiang, XU Xiyan, et al. Barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms[J]. Journal of Hazardous Materials, 2021, 416: 125835.
|
11 |
MOLAVI Hossein, ESKANDARI Alireza, SHOJAEI Akbar, et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66(Zr)[J]. Microporous and Mesoporous Materials, 2018, 257: 193-201.
|
12 |
余翔, 韩铭, 杨小震. 分子动力学模拟研究线型聚乙烯链在强电场中的取向行为[J]. 高等学校化学学报, 2011, 32(1): 180-184.
|
|
YU Xiang, HAN Ming, YANG Xiaozhen. Molecular dynamics simulation study on the reorientation behavior of linear polyethylene under high electric field[J]. Chemical Journal of Chinese Universities, 2011, 32(1): 180-184.
|
13 |
卢天, 陈飞武. 原子电荷计算方法的对比[J]. 物理化学学报, 2012, 28(1): 1-18.
|
|
LU Tian, CHEN Feiwu. Comparison of computational methods for atomic charges[J]. Acta Physico-Chimica Sinica, 2012, 28(1): 1-18.
|
14 |
HU Jianbo, LIU Yang, LIU Jing, et al. High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand[J]. Microporous and Mesoporous Materials, 2018, 256: 25-31.
|
15 |
AZITA A K, SAEID Y. Computational study of the effect of functionalization on natural gas components separation and adsorption in NUM-3a MOF[J]. Journal of Molecular Graphics and Modelling, 2020, 101: 107731.
|
16 |
石勤, 席静, 张富民. MER型沸石吸附分离CO2/CH4的分子模拟[J]. 化工进展, 2020, 39(11): 4408-4417.
|
|
SHI Qin, XI Jing, ZHANG Fumin. Molecular simulation of adsorption separation of CO2/CH4 by MER-type zeolites[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4408-4417.
|
17 |
邹龙辉. 氦基混合气体在活性炭中低温吸附特性研究[D]. 北京: 中国科学院理化技术研究所, 2018.
|
|
ZOU Longhui. Research on cryogenic adsorption of helium-based gas mixture on activated carbon[D]. Beijing: Technical Institute of Physics and Chemistry CAS, 2018.
|
18 |
SIMON C M, SMIT B, HARANCZYK M. pyIAST: Ideal adsorbed solution theory (IAST) Python package[J]. Computer Physics Communications, 2016, 200: 364-380.
|
19 |
胡彪. 煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制[D]. 徐州: 中国矿业大学, 2022.
|
|
HU Biao. Characteristics of methane adsorption behavior with multi-scale pore structure in coal and its micro-influence mechanism[D]. Xuzhou: China University of Mining and Technology, 2022.
|
20 |
杜晓明, 黄勇, 张倩, 等. NaX沸石吸附储氢的分子模拟[J]. 石油学报(石油加工), 2012, 28(S1): 137-140.
|
|
DU Xiaoming, HUANG Yong, ZHANG Qian, et al. Molecular simulation of hydrogen adsorption on NaX zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(S1): 137-140.
|
21 |
许嘉楠, 李强, 秦玉才, 等. TON分子筛上丁烷异构体吸附行为的分子模拟[J]. 石油炼制与化工, 2022, 53(11): 46-53.
|
|
XU Jianan, LI Qiang, QIN Yucai, et al. Molecular simulation of adsorption behavior of butane isomers in ton zeolite[J]. Petroleum Processing and Petrochemicals, 2022, 53(11): 46-53.
|
22 |
赵静, 刘添翼, 李强, 等. NaX分子筛吸附分离CO2/CH4的巨正则蒙特卡洛模拟[J]. 辽宁石油化工大学学报, 2023, 43(2): 13-19.
|
|
ZHAO Jing, LIU Tianyi, LI Qiang, et al. Grand canonical Monte Carlo simulation of adsorption and separation performances of CO2/CH4 by NaX zeolite[J]. Journal of Liaoning Petrochemical University, 2023, 43(2): 13-19.
|
23 |
高江涛, 冉小波, 霍宇航. 常压下CH4/N2/CO2在阜生矿煤样表面吸附热力学研究[J]. 煤炭技术, 2022, 41(8): 136-139.
|
|
GAO Jiangtao, RAN Xiaobo, HUO Yuhang. Thermodynamics study on adsorption of CH4/N2/CO2 on surface of fusheng coal sample at normal pressure[J]. Coal Technology, 2022, 41(8): 136-139.
|