化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4716-4730.DOI: 10.16085/j.issn.1000-6613.2022-1947
葛亚粉(), 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军()
收稿日期:
2022-10-19
修回日期:
2023-04-07
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
巩雁军
作者简介:
葛亚粉(1995—),女,博士研究生,研究方向为新材料与催化剂工程。E-mail:18865518179@163.com。
基金资助:
GE Yafen(), SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun()
Received:
2022-10-19
Revised:
2023-04-07
Online:
2023-09-15
Published:
2023-09-28
Contact:
GONG Yanjun
摘要:
目前,吸附及催化氧化技术是去除挥发性有机化合物(VOCs)最为高效、经济、环境友好的方法。分子筛具有较大的比表面积、规整的微孔孔道和稳定的结构,因此其作为吸附剂及催化剂在工业VOCs的去除过程中有重要的应用价值。本文总结了近年来分子筛吸附VOCs的规律性研究以及分子筛微结构和表面性质对催化氧化的影响。其中影响吸附VOCs的关键因素包括分子筛拓扑结构、阳离子类型、孔道多极化、亲疏水性等;针对催化氧化技术,主要讨论了负载贵金属/非贵金属的分子筛催化剂,其中获得高效催化氧化VOCs催化剂的关键在于以下几个方面:以结构形貌适宜的分子筛载体为基础,构建有效调控金属物种粒子尺寸的制备方法;调控活性物种的化学状态及其与分子筛载体的相互作用;深入理解分子筛微结构、活性物种的状态等因素对催化性能的影响。
中图分类号:
葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730.
GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730.
拓扑结构 | 分子筛 | Si/Al | 比表面积/m2·g-1 | VOCs | 吸附容量/mmol·g-1 | 相对湿度/% | 吸附温度/℃ | 文献 |
---|---|---|---|---|---|---|---|---|
MFI | Silicate-1 | ∞ | 377 | 正己烷 | 1.30 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 丙酮 | 1.82 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 对二甲苯 | 1.28 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 正己烷 | 1.23 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 丙酮 | 2.15 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 对二甲苯 | 1.17 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 正己烷 | 1.13 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 丙酮 | 2.43 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 对二甲苯 | 0.97 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 正己烷 | 0.18 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 丙酮 | 0.10 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 对二甲苯 | 0.04 | 0 | 25 | [ |
FAU | NaX | 1.1 | 938 | 甲苯 | 2.75 | 0 | 30 | [ |
FAU | USY | 23.7 | 893 | 甲苯 | 1.99 | 0 | 30 | [ |
MFI | Silicate-1 | ∞ | 365 | 甲苯 | 1.49 | 0 | 30 | [ |
FAU | NaY | 2.5 | 758 | 正己烷 | 1.25 | 0 | 30 | [ |
*BEA | Beta | 412.0 | 781 | 甲苯 | 4.13 | 30 | 35 | [ |
FAU | NaY | 5.42 | 888 | 甲苯 | 3.2 | 0 | 25 | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.93 | 0 | — | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.36 | 40 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.69 | 0 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.48 | 40 | — | [ |
表1 不同骨架结构的分子筛吸附VOCs性能对比
拓扑结构 | 分子筛 | Si/Al | 比表面积/m2·g-1 | VOCs | 吸附容量/mmol·g-1 | 相对湿度/% | 吸附温度/℃ | 文献 |
---|---|---|---|---|---|---|---|---|
MFI | Silicate-1 | ∞ | 377 | 正己烷 | 1.30 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 丙酮 | 1.82 | 0 | 25 | [ |
MFI | Silicate-1 | ∞ | 377 | 对二甲苯 | 1.28 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 正己烷 | 1.23 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 丙酮 | 2.15 | 0 | 25 | [ |
*BEA | Beta | — | 493 | 对二甲苯 | 1.17 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 正己烷 | 1.13 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 丙酮 | 2.43 | 0 | 25 | [ |
STT | SSZ-23 | — | 536 | 对二甲苯 | 0.97 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 正己烷 | 0.18 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 丙酮 | 0.10 | 0 | 25 | [ |
CHA | Chabazite | — | 803 | 对二甲苯 | 0.04 | 0 | 25 | [ |
FAU | NaX | 1.1 | 938 | 甲苯 | 2.75 | 0 | 30 | [ |
FAU | USY | 23.7 | 893 | 甲苯 | 1.99 | 0 | 30 | [ |
MFI | Silicate-1 | ∞ | 365 | 甲苯 | 1.49 | 0 | 30 | [ |
FAU | NaY | 2.5 | 758 | 正己烷 | 1.25 | 0 | 30 | [ |
*BEA | Beta | 412.0 | 781 | 甲苯 | 4.13 | 30 | 35 | [ |
FAU | NaY | 5.42 | 888 | 甲苯 | 3.2 | 0 | 25 | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.93 | 0 | — | [ |
FAU | USY | 100 | 646 | 甲苯 | 0.36 | 40 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.69 | 0 | — | [ |
MFI | ZSM-5 | 400 | 364 | 甲苯 | 0.48 | 40 | — | [ |
催化剂 | VOCs | T50/℃ | T90/℃ | VOCs浓度/μL·L-1 | 反应流速/mL·min-1 | 空速/mL·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
10%Co/MCM-22 | 甲苯 | 293 | 307 | 1000 | 100 | 60000 | [ |
PdCu/ZSM-5 | 甲苯 | — | 152 | 50 | 30 | 36000 | [ |
Cu-ZSM-5 | 正丁胺 | — | 279 | 375 | 100 | 12000 | [ |
Cu-Hβ | 正丁胺 | 163 | 340 | 375 | 100 | 12000 | [ |
Cu-SAPO-34 | 正丁胺 | 275 | 330 | 375 | 100 | 12000 | [ |
Cu-MCM-22 | 正丁胺 | 177 | 280 | 375 | 100 | 12000 | [ |
Co3O4/HZSM-5/β-CD | 甲苯 | 281 | 288 | — | 100 | 15000 | [ |
Co3O4/ZSM-5 | 二氯甲烷 | — | 370 | 1000 | 100 | 30000 | [ |
MnO x /HZSM-5 | 甲苯 | 245 | 255 | — | 100 | 15000 | [ |
Pt/CsZSM-5-60 | 甲苯 | 167 | 170 | 1000 | 100 | 60000 | [ |
Pt/ZSM-5 | 甲苯 | 147 | 155 | 1000 | 100 | 60000 | [ |
Pd3@Beta | 甲苯 | 169 | — | 1000 | 100 | 60000 | [ |
PtMn0.2@ZSM5 | 甲苯 | 160 | 175 | 800 | 50 | 30000 | [ |
Pt@ZSM-5 | 甲苯 | 201 | — | 1000 | 100 | 60000 | [ |
表2 负载金属型分子筛催化剂催化氧化VOCs性能
催化剂 | VOCs | T50/℃ | T90/℃ | VOCs浓度/μL·L-1 | 反应流速/mL·min-1 | 空速/mL·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
10%Co/MCM-22 | 甲苯 | 293 | 307 | 1000 | 100 | 60000 | [ |
PdCu/ZSM-5 | 甲苯 | — | 152 | 50 | 30 | 36000 | [ |
Cu-ZSM-5 | 正丁胺 | — | 279 | 375 | 100 | 12000 | [ |
Cu-Hβ | 正丁胺 | 163 | 340 | 375 | 100 | 12000 | [ |
Cu-SAPO-34 | 正丁胺 | 275 | 330 | 375 | 100 | 12000 | [ |
Cu-MCM-22 | 正丁胺 | 177 | 280 | 375 | 100 | 12000 | [ |
Co3O4/HZSM-5/β-CD | 甲苯 | 281 | 288 | — | 100 | 15000 | [ |
Co3O4/ZSM-5 | 二氯甲烷 | — | 370 | 1000 | 100 | 30000 | [ |
MnO x /HZSM-5 | 甲苯 | 245 | 255 | — | 100 | 15000 | [ |
Pt/CsZSM-5-60 | 甲苯 | 167 | 170 | 1000 | 100 | 60000 | [ |
Pt/ZSM-5 | 甲苯 | 147 | 155 | 1000 | 100 | 60000 | [ |
Pd3@Beta | 甲苯 | 169 | — | 1000 | 100 | 60000 | [ |
PtMn0.2@ZSM5 | 甲苯 | 160 | 175 | 800 | 50 | 30000 | [ |
Pt@ZSM-5 | 甲苯 | 201 | — | 1000 | 100 | 60000 | [ |
1 | 马超, 薛志钢, 李树文, 等. VOCs排放、污染以及控制对策[J]. 环境工程技术学报, 2012, 2(2): 103-109. |
MA Chao, XUE Zhigang, LI Shuwen, et al. VOCs emission, pollution and control measures[J]. Journal of Environmental Engineering Technology, 2012, 2(2): 103-109. | |
2 | Ulrich PÖSCHL, SHIRAIWA Manabu. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene[J]. Chemical Reviews, 2015, 115(10): 4440-4475. |
3 | 王乐, 刘忠生, 廖昌建, 等. 《石油炼制废气治理工程技术规范》释疑(二)——关于真实蒸气压、加热炉和焚烧炉、火炬的相关问题[J]. 炼油技术与工程, 2019, 49(12): 60-64. |
WANG Le, LIU Zhongsheng, LIAO Changjian, et al. Explanation to“Technical Specifications of Waste Gas Treatment Engineering in Petroleum Refining Industry”(Ⅱ)—Issues related to true vapor pressure, heating furnace, incinerator, torch[J]. Petroleum Refinery Engineering, 2019, 49(12): 60-64. | |
4 | 曾鸣, 王永利, 张硕, 等. “十四五”能源规划与“30·60”双碳目标实现过程中的12个关键问题[J]. 中国电力企业管理, 2021(1): 41-43. |
ZENG Ming, WANG Yongli, ZHANG Shuo, et al. 12 Key issues in the process of “14th Five-Year Plan” energy planning and “30·60” double carbon target realization[J]. China Power Enterprise Management, 2021(1): 41-43. | |
5 | MINELLA Marco, MINERO Claudio. Evaluation of gas/solid photocatalytic performance for the removal of VOCs at ppb and sub-ppb levels[J]. Chemosphere, 2021, 272: 129636. |
6 | ZHOU Lilong, ZHANG Baojian, LI Zhengjie, et al. Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs[J]. Molecular Catalysis, 2020, 489: 110920. |
7 | CHUNG Wei-Chieh, MEI Danhua, TU Xin, et al. Removal of VOCs from gas streams via plasma and catalysis[J]. Catalysis Reviews, 2019, 61(2): 270-331. |
8 | 高博, 曾毅夫, 叶明强, 等. 治理VOCs的新工艺——沸石转轮吸附浓缩+催化燃烧[J]. 中国环保产业, 2016(8): 39-41, 45. |
GAO Bo, ZENG Yifu, YE Mingqiang, et al. A sort of new technology for zeolite rotating wheel adsorption concentration+catalytic combustion[J]. China Environmental Protection Industry, 2016(8): 39-41, 45. | |
9 | ZANG Meng, ZHAO Chaocheng, WANG Yongqiang, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J]. Journal of Saudi Chemical Society, 2019, 23(6): 645-654. |
10 | FU Xingrui, LIU Yue, YAO Weiyuan, et al. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation[J]. Catalysis Communications, 2016, 83: 22-26. |
11 | YANG Xueqin, MA Xiuyun, YU Xiaolin, et al. Exploration of strong metal-support interaction in zirconia supported catalysts for toluene oxidation[J]. Applied Catalysis B: Environmental, 2020, 263: 118355. |
12 | OUZZINE M, ROMERO-ANAYA A J, LILLO-RÓDENAS M A, et al. Spherical activated carbons for the adsorption of a real multicomponent VOC mixture[J]. Carbon, 2019, 148: 214-223. |
13 | 冯勇超, 于庆君, 易红宏, 等. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098. |
FENG Yongchao, YU Qingjun, YI Honghong, et al. Research progress of MFI-type zeolites in the field of VOCs removal[J]. Materials Reports, 2020, 34(17): 17089-17098. | |
14 | WU Shuhui, WANG Yaquan, SUN Chao, et al. Novel preparation of binder-free Y/ZSM-5 zeolite composites for VOCs adsorption[J]. Chemical Engineering Journal, 2021, 417: 129172. |
15 | ZHANG Weidong, ZHOU Yong, SHAMZHY Mariya, et al. Total oxidation of toluene and propane over supported Co3O4 catalysts: Effect of structure/acidity of MWW zeolite and cobalt loading[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15143-15158. |
16 | HE Jiaqin, CHEN Dongyun, LI Najun, et al. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene[J]. Applied Catalysis B: Environmental, 2020, 265: 118560. |
17 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2014. |
XU Ruren, PANG Wenqin, HUO Qisheng, et al. Molecular sieve and porous materials chemistry[M]. 2nd ed. Beijing: Science Press, 2014. | |
18 | 岳旭, 王胜, 高杨, 等. VOCs在吸附剂上吸附性能的热力学研究[J]. 燃料化学学报, 2020, 48(6): 752-760. |
YUE Xu, WANG Sheng, GAO Yang, et al. Thermodynamics analysis on the adsorption behaviors of VOCs on various adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 752-760. | |
19 | SHEN Xiaoqiang, DU Xuesen, YANG Dafei, et al. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729. |
20 | A-F COSSERON, DAOU T J, TZANIS L, et al. Adsorption of volatile organic compounds in pure silica CHA, BEA, MFI and STT-type zeolites[J]. Microporous and Mesoporous Materials, 2013, 173: 147-154. |
21 | WANG Cheng, GUO Huidong, LENG Shaozheng, et al. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: A review[J]. Critical Reviews in Solid State and Materials Sciences, 2021, 46(4): 330-348. |
22 | 王旭, 吴玉帅, 杨欣, 等. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826. |
WANG Xu, WU Yushuai, YANG Xin, et al. Review of adsorptive removal of volatile organic compounds by zeolite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826. | |
23 | 姚露露, 周燕芳, 郭珊珊, 等. Y型与ZSM-5型分子筛吸附VOCs性能的对比[J]. 环境工程学报, 2022, 16(1): 182-189. |
YAO Lulu, ZHOU Yanfang, GUO Shanshan, et al. Comparison of VOCs adsorption performance between Y and ZSM-5 zeolite[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 182-189. | |
24 | DENG Hua, PAN Tingting, ZHANG Yan, et al. Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites: An experimental and theoretical study[J]. Chemical Engineering Journal, 2020, 394: 124986. |
25 | NIGAR H, NAVASCUÉS N, DE LA IGLESIA O, et al. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection[J]. Separation and Purification Technology, 2015, 151: 193-200. |
26 | WANG Jie, CAO Shiwei, SUN Yu, et al. β zeolite nanostructures with a high SiO2/Al2O3 ratio for the adsorption of volatile organic compounds[J]. ACS Applied Nano Materials, 2021, 4(12): 13257-13266. |
27 | FENG Aihu, YU Yang, MI Le, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous and Mesoporous Materials, 2019, 280: 211-218. |
28 | 周燕芳. 分子筛VOCs吸附性能及其工业化应用研究[D]. 杭州: 浙江大学, 2019. |
ZHOU Yanfang. Adsorption performance and industrial application of zeolites for VOCs[D]. Hangzhou: Zhejiang University, 2019. | |
29 | HESSOU Etienne P, BÉDÉ Lucie A, JABRAOUI Hicham, et al. Adsorption of toluene and water over cationic-exchanged Y zeolites: A DFT exploration[J]. Molecules, 2021, 26(18): 5486. |
30 | DU Yueying, XIAO Gaofei, GUO Ziyang, et al. A high-performance and stable Cu/Beta for adsorption-catalytic oxidation in situ destruction of low concentration toluene[J]. Science of the Total Environment, 2022, 833: 155288. |
31 | Héctor VALDÉS, RIQUELME Andrés L, SOLAR Víctor A, et al. Removal of chlorinated volatile organic compounds onto natural and Cu-modified zeolite: The role of chemical surface characteristics in the adsorption mechanism[J]. Separation and Purification Technology, 2021, 258: 118080. |
32 | LIU Yingshu, LI Ziyi, YANG Xiong, et al. Performance of mesoporous silicas (MCM-41 and SBA-15) and carbon (CMK-3) in the removal of gas-phase naphthalene: Adsorption capacity, rate and regenerability[J]. RSC Advances, 2016, 6(25): 21193-21203. |
33 | LI Chao, REN Yanqun, GOU Jinsheng, et al. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances[J]. Applied Surface Science, 2017, 392: 785-794. |
34 | LI Xianfeng, WANG Jian, GUO Yangyang, et al. Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds[J]. Chemical Engineering Journal, 2021, 411: 128558. |
35 | KIM Nam Sun, NUMAN Muhammad, Sung Chan NAM, et al. Dynamic adsorption/desorption of p-xylene on nanomorphic MFI zeolites: Effect of zeolite crystal thickness and mesopore architecture[J]. Journal of Hazardous Materials, 2021, 403: 123659. |
36 | ZHOU Jian, FAN Wei, WANG Yangdong, et al. The essential mass transfer step in hierarchical/nano zeolite: Surface diffusion[J]. National Science Review, 2020, 7(11): 1630-1632. |
37 | TEIXEIRA Andrew R, CHANG Chun-Chih, COOGAN Timothy, et al. Dominance of surface barriers in molecular transport through silicalite-1[J]. The Journal of Physical Chemistry C, 2013, 117(48): 25545-25555. |
38 | QI Xiaoduo, VATTIPALLI Vivek, DAUENHAUER Paul J, et al. Silica nanoparticle mass transfer fins for MFI composite materials[J]. Chemistry of Materials, 2018, 30(7): 2353-2361. |
39 | VATTIPALLI Vivek, QI Xiaoduo, DAUENHAUER Paul J, et al. Long walks in hierarchical porous materials due to combined surface and configurational diffusion[J]. Chemistry of Materials, 2016, 28(21): 7852-7863. |
40 | BI Fukun, ZHANG Xiaodong, CHEN Jinfeng, et al. Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation[J]. Applied Catalysis B: Environmental, 2020, 269: 118767. |
41 | 黄海凤, 戎文娟, 顾勇义, 等. ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J]. 环境科学学报, 2014, 34(12): 3144-3151. |
HUANG Haifeng, RONG Wenjuan, GU Yongyi, et al. Adsorption and desorption of VOCs on the ZSM-5 zeolite[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3144-3151. | |
42 | YIN Tao, MENG Xuan, JIN Linpeng, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. |
43 | PLIEKHOV Oleksii, PLIEKHOVA Olena, Iztok ARČON, et al. Study of water adsorption on EDTA dealuminated zeolite Y[J]. Microporous and Mesoporous Materials, 2020, 302: 110208. |
44 | 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. |
ZHANG Yuanyuan, WANG Lili, HE Li, et al. Modification of zeolite and adsorption of toluene under high humidity condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5509-5514. | |
45 | CHAO Huanping, PENG Chunlun, LEE Chung-Kung, et al. A study on sorption of organic compounds with different water solubilities on octadecyltrichlorosilane-modified NaY zeolite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2): 195-200. |
46 | LIU Li ying, DU Tao, FANG Xin, et al. Preparation of hydrophobic zeolite 13X@SiO2 and their adsorption properties of CO2 and H2O[J]. Advanced Materials Research, 2014, 1053: 311-316. |
47 | LU Shuangchun, LIU Qingling, HAN Rui, et al. Core-shell structured Y zeolite/hydrophobic organic polymer with improved toluene adsorption capacity under dry and wet conditions[J]. Chemical Engineering Journal, 2021, 409: 128194. |
48 | 叶巧苑. 沸石固定床吸附催化燃烧在汽车烘干线有机废气中的应用[J]. 节能与环保, 2022(9): 78-79. |
YE Qiaoyuan. Application of zeolite fixed bed adsorption catalytic combustion in organic waste gas of automobile drying line[J]. Energy Conservation & Environmental Protection, 2022(9): 78-79. | |
49 | TSENG T K, CHU H. The kinetics of catalytic incineration of styrene over a MnO/Fe2O3 catalyst[J]. Science of the Total Environment, 2001, 275(1/2/3): 83-93. |
50 | BANU Ionut, MANTA Corina Mihaela, BERCARU Georgeta, et al. Combustion kinetics of cyclooctane and its binary mixture with o-xylene over a Pt/γ-alumina catalyst[J]. Chemical Engineering Research and Design, 2015, 102: 399-406. |
51 | YANG Cuiting, MIAO Guang, PI Yunhong, et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review[J]. Chemical Engineering Journal, 2019, 370: 1128-1153. |
52 | KAMAL Muhammad Shahzad, RAZZAK Shaikh A, HOSSAIN Mohammad M. Catalytic oxidation of volatile organic compounds (VOCs) —A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
53 | HOSSEINI M, BARAKAT T, COUSIN R, et al. Catalytic performance of core-shell and alloy Pd-Au nanoparticles for total oxidation of VOC: The effect of metal deposition[J]. Applied Catalysis B: Environmental, 2012, 111/112: 218-224. |
54 | PALACIO L A, SILVA E R, CATALÃO R, et al. Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene[J]. Journal of Hazardous Materials, 2008, 153(1/2): 628-634. |
55 | MENG Xiaoling, MENG Lingke, GONG Yanjun, et al. Modifying Y zeolite with chloropropyl for improving Cu load on Y zeolite as a super Cu/Y catalyst for toluene oxidation[J]. RSC Advances, 2021, 11(59): 37528-37539. |
56 | ROMERO Douglas, CHLALA Dayan, LABAKI Madona, et al. Removal of toluene over NaX zeolite exchanged with Cu2+ [J]. Catalysts, 2015, 5(3): 1479-1497. |
57 | XING Xin, LI Na, SUN Yonggang, et al. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts[J]. Catalysis Today, 2020, 339: 192-199. |
58 | ZHANG Chuanhui, WANG Yating, LI Genqin, et al. Tuning smaller Co3O4 nanoparticles onto HZSM-5 zeolite via complexing agents for boosting toluene oxidation performance[J]. Applied Surface Science, 2020, 532: 147320. |
59 | Anna ROKICIŃSKA, DROZDEK Marek, DUDEK Barbara, et al. Cobalt-containing BEA zeolite for catalytic combustion of toluene[J]. Applied Catalysis B: Environmental, 2017, 212: 59-67. |
60 | HUANG He, ZHANG Chuanhui, WANG Lei, et al. Promotional effect of HZSM-5 on the catalytic oxidation of toluene over MnO x /HZSM-5 catalysts[J]. Catalysis Science & Technology, 2016, 6(12): 4260-4270. |
61 | ZHANG Chuanhui, HUANG He, LI Genqin, et al. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnO x /HZSM-5 catalysts[J]. Catalysis Today, 2019, 327: 374-381. |
62 | SU Yun, FU Kaixuan, PANG Caihong, et al. Recent advances of chlorinated volatile organic compounds’ oxidation catalyzed by multiple catalysts: Reasonable adjustment of acidity and redox properties[J]. Environmental Science & Technology, 2022, 56(14): 9854-9871. |
63 | YANG Dengyao, FU Shiyu, HUANG Shushu, et al. The preparation of hierarchical Pt/ZSM-5 catalysts and their performance for toluene catalytic combustion[J]. Microporous and Mesoporous Materials, 2020, 296: 109802. |
64 | CHEN Chunyu, ZHU Jie, CHEN Fang, et al. Enhanced performance in catalytic combustion of toluene over mesoporous Beta zeolite-supported platinum catalyst[J]. Applied Catalysis B: Environmental, 2013, 140/141: 199-205. |
65 | KHAWAJA Rebecca EL, SONAR Shilpa, BARAKAT Tarek, et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles[J]. Catalysis Today, 2022, 405/406: 212-220. |
66 | ZHANG Jingyan, RAO Cheng, PENG Honggen, et al. Enhanced toluene combustion performance over Pt loaded hierarchical porous MOR zeolite[J]. Chemical Engineering Journal, 2018, 334: 10-18. |
67 | CHEN Chunyu, WANG Xiong, ZHANG Jian, et al. Superior performance in catalytic combustion of toluene over KZSM-5 zeolite supported platinum catalyst[J]. Catalysis Letters, 2014, 144(11): 1851-1859. |
68 | CHEN Chunyu, WANG Xiong, ZHANG Jian, et al. Superior performance in catalytic combustion of toluene over mesoporous ZSM-5 zeolite supported platinum catalyst[J]. Catalysis Today, 2015, 258: 190-195. |
69 | SUN Wenjuan, YANG Zhenglong, XU Yanbin, et al. Fabrication of Pd3@Beta for catalytic combustion of VOCs by efficient Pd3 cluster and seed-directed hydrothermal syntheses[J]. RSC Advances, 2020, 10(22): 12772-12779. |
70 | CHEN Chunyu, CHEN Fang, ZHANG Ling, et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts[J]. Chemical Communications, 2015, 51(27): 5936-5938. |
71 | JIANG Haoxi, LIU Zhonghua, YAO Chuanxu, et al. Preparation of highly dispersed Pt/Hβ catalyst via supercritical fluid deposition and its catalytic performance for combustion of toluene[J]. Microporous and Mesoporous Materials, 2022, 335: 111842. |
72 | YANG Lizhe, LIU Qingling, HAN Rui, et al. Confinement and synergy effect of bimetallic Pt-Mn nanoparticles encapsulated in ZSM-5 zeolite with superior performance for acetone catalytic oxidation[J]. Applied Catalysis B: Environmental, 2022, 309: 121224. |
73 | PENG Honggen, DONG Tao, YANG Shenyou, et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes[J]. Nature Communications, 2022, 13: 295. |
74 | MOLINER Manuel, GABAY Jadeene E, KLIEWER Chris E, et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite[J]. Journal of the American Chemical Society, 2016, 138(48): 15743-15750. |
75 | HAN Fei, YUAN Mengqi, MINE Shinya, et al. Formation of highly active superoxide sites on CuO nanoclusters encapsulated in SAPO-34 for catalytic selective ammonia oxidation[J]. ACS Catalysis, 2019, 9(11): 10398-10408. |
76 | ZHANG Jian, WANG Liang, SHAO Yi, et al. A Pd@Zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores [J]. Angewandte Chemie International Edition, 2017, 56(33): 9747-9751. |
77 | ZHANG Jian, WANG Liang, ZHANG Bingsen, et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth[J]. Nature Catalysis, 2018, 1(7): 540-546. |
78 | WANG Yeqing, WANG Chengtao, WANG Lingxiang, et al. Zeolite fixed metal nanoparticles: New perspective in catalysis[J]. Accounts of Chemical Research, 2021, 54(11): 2579-2590. |
79 | ZHU Xinbao, HE Xinyu, GUO Longhui, et al. Hydrophobic modification of ZSM-5-encapsulated uniform Pt nanoparticles for catalytic oxidation of volatile organic compounds[J]. ACS Applied Nano Materials, 2022, 5(3): 3374-3385. |
80 | XIAO Hailin, WU Junliang, WANG Xueqing, et al. Ozone-enhanced deep catalytic oxidation of toluene over a platinum-ceria-supported BEA zeolite catalyst[J]. Molecular Catalysis, 2018, 460: 7-15. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[12] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[15] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |