化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3443-3456.DOI: 10.16085/j.issn.1000-6613.2022-1653
周龙大1,2(), 赵立新1,2(), 徐保蕊1,2, 张爽1,2, 刘琳1,2
收稿日期:
2022-09-07
修回日期:
2022-12-08
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
赵立新
作者简介:
周龙大(1996—),男,硕士研究生,研究方向为石油与化工机械。E-mail:ld_zhou@126.com。
基金资助:
ZHOU Longda1,2(), ZHAO Lixin1,2(), XU Baorui1,2, ZHANG Shuang1,2, LIU Lin1,2
Received:
2022-09-07
Revised:
2022-12-08
Online:
2023-07-15
Published:
2023-08-14
Contact:
ZHAO Lixin
摘要:
概述了国内外基于电场-旋流耦合场来强化非均多相分离的研究进展,并对相应强化分离方法进行分析与归纳。根据不同介质类别分别介绍了电场-旋流耦合强化液-液分离、气-固分离、气-液分离、固-液分离等多相介质分离技术、设备及工作原理,例如:动态/静态静电旋流脱水装置、静电旋风除尘器/摩擦旋风分离器、静电旋风除雾器及电动旋液分离器。总结了电场类型与分布、耦合场与液滴、颗粒作用、耦合场数值模拟方法等,为研究电场-旋流耦合强化分离多相介质提供依据。针对特殊多相介质(如黏度大、密度差小及弱/无电导率等)分离性能较差的问题,本文提出应综合考虑耦合设备的结构尺寸、操作参数及安装条件,在提高分离效率的基础上,应加强电场-旋流耦合装置运行安全性的研究以扩大耦合强化多相介质分离的适用范围。
中图分类号:
周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456.
ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456.
处理对象 | 电场类型 | 电极形态 | 布置形式 | 电极材料 | 脱水效率或聚结速率 | 参考文献 |
---|---|---|---|---|---|---|
W/O乳状液(葵花籽油、去离子水) | ACE | 二根圆柱组合(H型) | 均匀 | 铜 | 15%~95% | [ |
油水混合物 | 螺旋叶片型 | 非均匀 | — | — | [ | |
牛顿介质、液滴(分散相) | DCE | 四极短圆柱型 | — | 0.75mm/s (液滴沉降速度) | [ | |
W/O乳状液 | 螺旋通道型 | 铜 | 68% | [ | ||
超低硫柴油、水滴(分散相) | 网状结构 | 不锈钢 | 90% | [ | ||
油、水(分散相) | 半椭圆型 | — | 10mm/s | [ | ||
辛酸、水(分散相) | 针板型 | — | 1200μm/min | [ | ||
硅油、蓖麻油(分散相) | — | 0.61μm/min | [ | |||
W/O乳状液(合成油、水) | PEF | 铜 | 26.25μm/min | [ | ||
蓖麻油、蒸馏水(分散相) | 同轴六边柱型 | — | — | [ | ||
O/W乳状液(柴油、去离子水) | 多根圆柱组合(筒型) | 均匀 | 钛 | 5.56μm/min | [ | |
葵花籽油、水(分散相) | DCE/PEF | 梯形结构 | 非均匀 | 抛光黄铜 | 6.75mm/s | [ |
表1 不同电极类型强化液-液分离对比
处理对象 | 电场类型 | 电极形态 | 布置形式 | 电极材料 | 脱水效率或聚结速率 | 参考文献 |
---|---|---|---|---|---|---|
W/O乳状液(葵花籽油、去离子水) | ACE | 二根圆柱组合(H型) | 均匀 | 铜 | 15%~95% | [ |
油水混合物 | 螺旋叶片型 | 非均匀 | — | — | [ | |
牛顿介质、液滴(分散相) | DCE | 四极短圆柱型 | — | 0.75mm/s (液滴沉降速度) | [ | |
W/O乳状液 | 螺旋通道型 | 铜 | 68% | [ | ||
超低硫柴油、水滴(分散相) | 网状结构 | 不锈钢 | 90% | [ | ||
油、水(分散相) | 半椭圆型 | — | 10mm/s | [ | ||
辛酸、水(分散相) | 针板型 | — | 1200μm/min | [ | ||
硅油、蓖麻油(分散相) | — | 0.61μm/min | [ | |||
W/O乳状液(合成油、水) | PEF | 铜 | 26.25μm/min | [ | ||
蓖麻油、蒸馏水(分散相) | 同轴六边柱型 | — | — | [ | ||
O/W乳状液(柴油、去离子水) | 多根圆柱组合(筒型) | 均匀 | 钛 | 5.56μm/min | [ | |
葵花籽油、水(分散相) | DCE/PEF | 梯形结构 | 非均匀 | 抛光黄铜 | 6.75mm/s | [ |
模拟方向 | 研究对象 | 模拟 软件 | 模拟类型 (瞬态/稳态) | 模拟方法及步骤 | 参考文献 |
---|---|---|---|---|---|
气-固分离 | 亚微米颗粒(分散相)和空气 | — | — | 计算机编程;建立二维模型;求解 | [ |
液-液分离 | 水滴(分散相)和油 | ANSYS | 瞬态 | 建立三维模型;划分并导入网格;编写UDS导入Fluent模块;设置边界条件;求解 | [ [ |
水滴群(分散相)和油 | [31.41] | ||||
气-固分离 | 微颗粒(分散相)和空气 | 稳态 | [ [ | ||
气-液分离 | 雾滴(分散相)和空气 | COMSOL | 导入三维模型;划分网格;设置边界条件;求解 建立二维模型;划分并导入网格;设置边界条件;求解 | [ |
表2 电场-旋流耦合强化分离数值模拟方法对比
模拟方向 | 研究对象 | 模拟 软件 | 模拟类型 (瞬态/稳态) | 模拟方法及步骤 | 参考文献 |
---|---|---|---|---|---|
气-固分离 | 亚微米颗粒(分散相)和空气 | — | — | 计算机编程;建立二维模型;求解 | [ |
液-液分离 | 水滴(分散相)和油 | ANSYS | 瞬态 | 建立三维模型;划分并导入网格;编写UDS导入Fluent模块;设置边界条件;求解 | [ [ |
水滴群(分散相)和油 | [31.41] | ||||
气-固分离 | 微颗粒(分散相)和空气 | 稳态 | [ [ | ||
气-液分离 | 雾滴(分散相)和空气 | COMSOL | 导入三维模型;划分网格;设置边界条件;求解 建立二维模型;划分并导入网格;设置边界条件;求解 | [ |
1 | 李青. 高频脉冲离心装置油水乳状液破乳分离的理论和实验研究[D]. 北京: 北京化工大学, 2015. |
LI Qing. Study and experiment of water-in-oil emulsion demulsification separating in high frequency pulse centrifugal separation device[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
2 | YANG Li, XIAO Jiangping, SHEN Yi, et al. The efficient removal of thallium from sintering flue gas desulfurization wastewater in ferrous metallurgy using emulsion liquid membrane[J]. Environmental Science and Pollution Research, 2017, 24(31): 24214-24222. |
3 | OLADIMEJI Temitayo E, SONIBARE Jacob A, OMOLEYE James A, et al. Data on the treatment of used lubricating oil from two different sources using solvent extraction and adsorption[J]. Data in Brief, 2018, 19: 2240-2252. |
4 | 李艳. 高温静电除尘过程的数值模拟研究[D]. 杭州: 浙江大学, 2015. |
LI Yan. Numerical simulation of high-temperature electrostatic precipitation[D]. Hangzhou: Zhejiang University, 2015. | |
5 | ZHANG Jianping, ZHA Zhenting, CHE Peng, et al. Theoretical study on submicron particle escape reduced by magnetic confinement effect in low inlet speed electrostatic cyclone precipitators[J]. Powder Technology, 2018, 339: 1005-1011. |
6 | JIANG Shuilin, YUAN Huixin, ZHOU Faqi, et al. Study on the performance of a long cylinder-electrostatic cyclone demister[J]. Chemical Engineering and Processing-Process Intensification, 2021, 164: 108398. |
7 | AMAMI E, KHEZAMI L, JEMAI A B, et al. Osmotic dehydration of some agro-food tissue pre-treated by pulsed electric field: Impact of impeller’s reynolds number on mass transfer and color[J]. Journal of King Saud University-Engineering Sciences, 2014, 26(1): 93-102. |
8 | BOCKER Ramon, SILVA Eric Keven. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices[J]. Food Chemistry: X, 2022, 15: 100398. |
9 | YOSHIDA Hideto, FUKUI Kunihiro, PRATARN Wongsarivej, et al. Particle separation performance by use of electrical hydro-cyclone[J]. Separation and Purification Technology, 2006, 50(3): 330-335. |
10 | PRATARN Wongsarivej, WIWUT Tanthapanichakoon, YOSHIDA Hideto, et al. Effect of pH of fine silica suspension and central rod diameter on the cut size of an electrical hydrocyclone with and without underflow[J]. Separation and Purification Technology, 2008, 63(2): 452-459. |
11 | PENG Ye, LIU Tao. Three fields used in lubricating oil for demulsification[C]//Proceedings of the 3rd International Conference on Advances in Energy and Environmental Science 2015. July 25-26, 2015. Zhuhai, China. Paris, France: Atlantis Press, 2015. |
12 | MANDAL Shubhadeep, BANGOPADHYAY Aditya, CHAKRABORTY Suman. The effect of surface charge convection and shape deformation on the settling velocity of drops in nonuniform electric field[J]. Physics of Fluids, 2017, 29(1): 012101. |
13 | YANG Ziyun, ZU Yunqiao, ZHU Jinshan, et al. Application of biosurfactant surfactin as a pH-switchable biodemulsifier for efficient oil recovery from waste crude oil[J]. Chemosphere, 2020, 240: 124946. |
14 | ZOLFAGHARI Reza, Ahmadun FAKHRU’L-RAZI, ABDULLAH Luqman C, et al. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry[J]. Separation and Purification Technology, 2016, 170: 377-407. |
15 | BAILES P J. Electrically augmented settlers and coalescers for solvent extraction[J]. Hydrometallurgy, 1992, 30(1/2/3): 417-430. |
16 | 毛宗强, 阎军, 李锐. 新型破乳器的研制[J]. 石油炼制与化工, 1998, 29(10): 51-54. |
MAO Zongqiang, YAN Jun, LI Rui. Development of a novel emulsion breaker[J]. Petroleum Processing and Petrochemicals, 1998, 29(10): 51-54. | |
17 | LESAINT Cédric, GLOMM Wilhelm R, LUNDGAARD Lars E, et al. Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352(1/2/3): 63-69. |
18 | 王永伟, 张杨, 王奎升, 等. 新型离心-脉冲电场联合破乳装置的设计[J]. 流体机械, 2009, 37(11): 15-18. |
WANG Yongwei, ZHANG Yang, WANG Kuisheng, et al. Design of a new type of joint demulsification device used combined centrifugal force and pulsed electric fields[J]. Fluid Machinery, 2009, 37(11): 15-18. | |
19 | KHAN Javed A, AL-KAYIEM Hussain H, ALEEM Waqas, et al. Influence of alkali-surfactant-polymer flooding on the coalescence and sedimentation of oil/water emulsion in gravity separation[J]. Journal of Petroleum Science and Engineering, 2019, 173: 640-649. |
20 | John S EOW, GHADIRI Mojtaba. Electrocoalesce-separators for the separation of aqueous drops from a flowing dielectric viscous liquid[J]. Separation and Purification Technology, 2002, 29(1): 63-77. |
21 | RODIONOVA Galina, Serkan KELESOĞLU, Johan SJÖBLOM. AC field induced destabilization of water-in-oil emulsions based on North Sea acidic crude oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448: 60-66. |
22 | ZHANG Dandan. Discussion on casing damage situation and prevention methods in a block[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(2): 022013. |
23 | NOÏK C, TRAPY J, MOURET A, et al. Design of a crude oil dehydration unit[C]//All Days. September 29-October 2, 2002. San Antonio, Texas. SPE, 2002. |
24 | KWON Woo Taeg, PARK Kunyik, HAN Sam Duck, et al. Investigation of water separation from water-in-oil emulsion using electric field[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 684-687. |
25 | 胡康, 何利民, 张鑫儒, 等. 柱状旋流电脱水器分离性能实验研究[J]. 石油化工高等学校学报, 2017, 30(4): 18-22. |
HU Kang, HE Limin, ZHANG Xinru, et al. Investigation on separation characteristic of cylindrical cyclone dehydrator[J]. Journal of Petrochemical Universities, 2017, 30(4): 18-22. | |
26 | 邱值, 龚海峰, 陈凌, 等. 双场耦合分离装置锥段结构对油-水分离的影响[J]. 石油学报(石油加工), 2022, 38(2): 404-413. |
QIU Zhi, GONG Haifeng, CHEN Ling, et al. Effects of cone structure on oil-water separation in double-field coupling separation device[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2022, 38(2): 404-413. | |
27 | GONG Haifeng, LI Wenlong, ZHANG Xianming, et al. Simulation of the coalescence and breakup of water-in-oil emulsion in a separation device strengthened by coupling electric and swirling centrifugal fields[J]. Separation and Purification Technology, 2020, 238: 116397. |
28 | GONG Haifeng, YANG Yang, YU Bao, et al. Coalescence characteristics of droplets dispersed in oil subjected to electric and centrifugal fields[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129398. |
29 | GONG Haifeng, LI Wenlong, ZHANG Xianming, et al. Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields[J]. Separation and Purification Technology, 2021, 257: 117905. |
30 | 龚海峰, 廖治祥, 彭烨, 等. 混沌频率电场激励乳化油液滴动力学仿真与响应[J]. 石油学报(石油加工), 2021, 37(3): 601-610. |
GONG Haifeng, LIAO Zhixiang, PENG Ye, et al. Dynamic simulation and response of emulsion droplets excited by chaotic frequency electric field[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 601-610. | |
31 | 高波. 电场-旋流场耦合强化乳化液油水分离性能研究[D]. 大庆: 东北石油大学, 2022. |
GAO Bo. Study on enhancement of oil-water separation performance of emulsion by electric field-swirl field coupling[D]. Daqing: Northeast Petroleum University, 2022. | |
32 | KOTHMIRE P P, BHALERAO Y J, NAIK V M, et al. Experimental studies on the performance and analysis of an electrostatic coalescer under different electrostatic boundary conditions[J]. Chemical Engineering Research and Design, 2020, 154: 273-282. |
33 | 赵立新, 刘琳, 杨旭, 等. 电场与磁场在非均相分离中的应用技术综述[J]. 化工机械, 2017, 44(6): 603-614. |
ZHAO Lixin, LIU Lin, YANG Xu, et al. Technology summary of applying electric field and magnetic field in heterogeneous separation[J]. Chemical Engineering & Machinery, 2017, 44(6): 603-614. | |
34 | TIENHAARAA Mika Kristian Sulev, LAMMERS Frederik Albert. Electrostatic coalescer and method for electrostatic coalescence: US20140339089[P]. 2014-11-20. |
35 | 蒲亚东, 阮达, 地力亚尔·哈米提, 等. 加电三维螺旋板式微通道对W/O型乳状液的破乳[J]. 化工学报, 2017, 68(7): 2790-2797. |
PU Yadong, RUAN Da, al DILIYAER·Hamitiet. Demulsification of W/O emulsion with three-dimensional electric spiral plate-type microchannel[J]. CIESC Journal, 2017, 68: 2790-2797. | |
36 | MA Zhengdong, PU Yadong, HAMITI Diliyaer, et al. Elaboration of the demulsification process of W/O emulsion with three-dimensional electric spiral plate-type microchannel[J]. Micromachines, 2019, 10(11): 751. |
37 | ZHANG Yanzhen, LIU Yonghong, JI Renjie, et al. Application of variable frequency technique on electrical dehydration of water-in-oil emulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386(1/2/3): 185-190. |
38 | LI Qing, CHEN Jiaqing, LIANG Meng, et al. Investigation of water separation from water-in-oil emulsion using high-frequency pulsed AC electric field by new equipment[J]. Journal of Dispersion Science and Technology, 2015, 36(7): 918-923. |
39 | GADHAVE Ashish D, CHASE George G. Coalescence of emulsified water drops in ULSD using a steel mesh electrowet coalescer[J]. Separation and Purification Technology, 2021, 254: 117675. |
40 | LI Ning, SUN Zhiqian, LIU Wenchuan, et al. Effect of electric field strength on deformation and breakup behaviors of droplet in oil phase: a molecular dynamics study[J]. Journal of Molecular Liquids, 2021, 333: 115995. |
41 | PENG Ye, LIU Tao, GONG Haifeng, et al. Review of the dynamics of coalescence and demulsification by high-voltage pulsed electric fields[J]. International Journal of Chemical Engineering, 2016, 2016: 2492453. |
42 | PENG Ye, LIU Tao, GONG Haifeng, et al. Effect of pulsed electric field with variable frequency on coalescence of drops in oil[J]. RSC Advances, 2015, 5(40): 31318-31323. |
43 | PENG Ye, LIAO Zhixiang, ZHANG Youyu, et al. Analysis of deformation dynamics of droplet in oil under the CPG electric field[J]. Chemical Engineering Research and Design, 2022, 183: 357-367. |
44 | 叶学民, 戴宇晴, 李春曦. 电场对液滴界面张力及动力学特征影响的研究进展[J]. 化工进展, 2016, 35(9): 2647-2655. |
YE Xuemin, DAI Yuqing, LI Chunxi. Review on the effect of electric field on interfacial tension and dynamics of liquid droplets[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2647-2655. | |
45 | BRASIL Thiago A, WATANABE Edson H, ASSENHEIMER Troner, et al. Microscope analysis and evaluation of the destabilization process of water-in-oil emulsions under application of electric field[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(3): 873-881. |
46 | LIU Yang, JIANG Wenming, YANG Jie, et al. Experimental study on evaluation and optimization of tilt angle of parallel-plate electrodes using electrocoagulation device for oily water demulsification[J]. Chemosphere, 2017, 181: 142-149. |
47 | ZHANG Jun. Movement of dispersed droplets of W/O emulsion in a uniform DC electrostatic field: simulation on droplet coalescence[J]. Chinese Journal of Chemical Engineering, 2015, 23(9): 1453-1459. |
48 | LUO Shirui, SCHIFFBAUER Jarrod, LUO Tengfei. Effect of electric field non-uniformity on droplets coalescence[J]. Physical Chemistry Chemical Physics, 2016, 18(43): 29786-29796. |
49 | GONG Haifeng, YU Bao, ZHANG Xianming, et al. Structural optimization of a demulsification and dewatering device coupled with swirl centrifugal and high-voltage fields by response surface methodology combined with numerical simulation[J]. Chemical Engineering Research and Design, 2019, 148: 361-374. |
50 | 胡康. 旋流电聚结器的研制与聚结特性研究[D]. 东营: 中国石油大学(华东), 2017. |
HU Kang. Development and investigation on coalescence characteristics of cyclone electrostatic coalescer[D]. Dongying: China University of Petroleum, 2017. | |
51 | 余保. 基于旋流离心场-高压脉冲电场耦合的乳化油脱水装置及其分离特性研究[D]. 重庆: 重庆理工大学, 2019. |
YU Bao. Study on the emulsion oil dewatering device coupled with swirl centrifugal and high voltage pulse electric fields and separation performance[D]. Chongqing: Chongqing University of Technology, 2019. | |
52 | HADIDI Hooman, KAMALI Reza, MANSHADI Mohammad K D. Numerical simulation of a novel non-uniform electric field design to enhance the electrocoalescence of droplets[J]. European Journal of Mechanics B: Fluids, 2020, 80: 206-215. |
53 | MHATRE Sameer, THAOKAR Rochish. Pin-plate electrode system for emulsification of a higher conductivity leaky dielectric liquid into a low conductivity medium[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13488-13496. |
54 | ZHANG Yanzhen, LIU Yonghong, JI Renjie. Dehydration efficiency of high-frequency pulsed DC electrical fields on water-in-oil emulsion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 373(1/2/3): 130-137. |
55 | 周衍涛, 王振波, 孙治谦, 等. 非均匀高频脉冲电场中水滴成链规律研究[J]. 高校化学工程学报, 2021, 35(3): 423-429. |
ZHOU Yantao, WANG Zhenbo, SUN Zhiqian, et al. Investigation of water chain under non-uniform high-frequency pulsed electric field[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(3): 423-429. | |
56 | REN B, KANG Y. Demulsification of oil-in-water(O/W) emulsion in bidirectional pulsed electric field[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(30): 8923-8931. |
57 | VIVACQUA V, MHATRE S, GHADIRI M, et al. Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields[J]. Chemical Engineering Research and Design, 2015, 104: 658-668. |
58 | METGHALCHI Shiva, KNUTSEN Synnove F, LARRY BEESON W. Long-term ambient PM10 concentrations and incidence of emphysema in California adults: Results from the AHSMOG study[J]. International Journal of Environmental Studies, 2011, 68(6): 777-790. |
59 | ZHANG Jianping, DU Yuying, WU Helen, et al. Numerical study on PM10 collection efficiency in a wire-cylinder electrostatic precipitator under multi-field coupling[J]. International Journal of Environmental Studies, 2014, 71(3): 344-359. |
60 | 陈开考, 郑文钟, 何勇. 离心-静电组合式空气滤清器的设计与试验研究[J]. 浙江大学学报(农业与生命科学版), 2003, 29(2): 152-156. |
CHEN Kaikao, ZHENG Wenzhong, HE Yong. Design and experiment study on entricfugal-electrostatic air filter for single-cylinder diesel engine[J]. Journal of Zhejiang Agricultural University (Agric & Life Sci), 2003, 29(2): 152-156. | |
61 | CUI Baoyu, ZHANG Caie, WEI Dezhou, et al. Effects of feed size distribution on separation performance of hydrocyclones with different vortex finder diameters[J]. Powder Technology, 2017, 322: 114-123. |
62 | LIN Guanyu, Le Thi CUC, LU Wei, et al. High-efficiency wet electrocyclone for removing fine and nanosized particles[J]. Separation and Purification Technology, 2013, 114: 99-107. |
63 | ASLAMOVA V S, ARSHINSKII M I, BRAGIN N A, et al. Study of a direct-flow cyclone with intermediate dust collection[J]. Chemical and Petroleum Engineering, 2009, 45(5/6): 372-375. |
64 | BAILES P J, LARKAI S K L. An experimental investigation into the use of high-voltage DC fields for liquid-phase separation[J]. Transactions of the Institution of Chemical Engineers, 1981, 59: 229. |
65 | LIM K S, LEE K W, KUHLMAN M R. An experimental study of the performance factors affecting particle collection efficiency of the electrocyclone[J]. Aerosol Science and Technology, 2001, 35(6): 969-977. |
66 | NIKAS K S P, VARONOS A A, BERGELES G C. Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator[J]. Journal of Electrostatics, 2005, 63(5): 423-443. |
67 | 胡朝峰. 电动除霾车载空气粉尘分离器粉尘分离机理及参数优化[D]. 长沙: 湖南大学, 2018. |
HU Chaofeng. Separation mechanism of a dust separator in electric decontamination vehicle-borne air dust separator and its parameters optimization[D]. Changsha: Hunan University, 2018. | |
68 | FUJITA T. Electrostatic separation of various kinds of plastics and papers[C]//International Symposium on East Asian Recycling Technology, 1999. |
69 | DODBIBA G, SHIBAYAMA A, MIYAZAKI T, et al. Electrostatic separation of the shredded plastic mixtures using a tribo-cyclone[J]. Magnetic and Electrical Separation, 2002, 11(1/2): 63-92. |
70 | DODBIBA G, SADAKI J, OKAYA K, et al. The use of air tabling and triboelectric separation for separating a mixture of three plastics[J]. Minerals Engineering, 2005, 18(15): 1350-1360. |
71 | GUO Baoyu, YU Aibing, GUO Jun. Numerical modeling of electrostatic precipitation: Effect of gas temperature[J]. Journal of Aerosol Science, 2014, 77: 102-115. |
72 | SHI Wenxiao, LIN Chen, CHEN Wei, et al. Environmental effect of current desulfurization technology on fly dust emission in China[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 1-9. |
73 | YU Zhikang, SUN Cheng, FANG Jiamei, et al. Water recovery efficiency improvement using the enhanced structure of the mist eliminator[J]. Process Safety and Environmental Protection, 2021, 154: 433-446. |
74 | YANG Laishun, WANG Jianxing, SUN Xianhang, et al. Multi-objective optimization design of spiral demister with punched holes by combining response surface method and genetic algorithm[J]. Powder Technology, 2019, 355: 106-118. |
75 | 王军锋, 李金, 徐惠斌, 等. 湿法脱硫协同去除细颗粒物的研究进展[J].化工进展, 2019, 38(7): 3402-3411. |
WANG Junfeng, LI Jin, XU Huibin, et al. Advances in research on wet desulfurization and synergistic removal of fine particles[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3402-3411. | |
76 | 袁惠新, 朱星茼, 付双成, 等. 静电-旋流除雾器性能的研究[J]. 流体机械, 2020, 48(5): 1-6, 48. |
YUAN Huixin, ZHU Xingtong, FU Shuangcheng, et al. Study on the defogging performance of an electrostatic cyclone[J]. Fluid Machinery, 2020, 48(5): 1-6, 48. | |
77 | 袁惠新, 姜水林, 付双成, 等. 利用数值模拟方法分析静电-旋流耦合除雾器的分离性能[J]. 环境工程学报, 2021, 15(2): 643-649. |
YUAN Huixin, JIANG Shuilin, FU Shuangcheng, et al. Analyze the separation performance of electrostatic-cyclonic coupling demister by numerical simulation method[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 643-649. | |
78 | 王静静. 复合除雾器性能分析及优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2020. |
WANG Jingjing. Performance analysis and optimization study of compound demister[D]. Harbin: Harbin Engineering University, 2020. | |
79 | DONG Jipeng, CHEN Guanghui, WANG Weiwen, et al. Falling film co-current flow cyclone demister for separating high-boiling droplets: gas-liquid flow pattern and performance[J]. Chemical Engineering Science, 2022, 251: 117442. |
80 | 郝雅洁. 湿法烟气脱硫除雾效率和流场优化的数值模拟研究[D]. 南京: 东南大学, 2015. |
HAO Yajie. Numerical simulation on demisting efficiency of wet flue gas desulfurization and the optimization of the flow filed[D]. Nanjing: Southeast University, 2015. | |
81 | 郝雅洁, 刘嘉宇, 袁竹林, 等. 除雾器内雾滴运动特性与除雾效率[J]. 化工学报, 2014, 65(12): 4669-4677. |
HAO Yajie, LIU Jiayu, YUAN Zhulin, et al. Movement characteristics of droplets and demisting efficiency of mist eliminator[J]. CIESC Journal, 2014, 65(12): 4669-4677. | |
82 | 韩博. 脱硫除尘一体化超低排放技术改造在燃煤电厂中的应用研究[D]. 北京: 华北电力大学(北京), 2017. |
HAN Bo. The application research on reformation of desulphurization and dusting integrated ultra-low emission technology of coal-fired power plant[D]. Beijing: North China Electric Power University, 2017. | |
83 | AVDEYEV Boris, MASYUTKIN Eugene, GOLIKOV Sergei, et al. Calculation of efficiency curve of magnetic hydrocyclone[C]//2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). February 1-3, 2017, St. Petersburg and Moscow, Russia. IEEE, 2017: 1225-1228. |
84 | 车中俊, 赵立新, 葛怡清. 磁场强化多相介质分离技术进展[J]. 化工进展, 2022, 41(6): 2839-2851. |
CHE Zhongjun, ZHAO Lixin, GE Yiqing. Development status of magnetic field intensificating separation of multiphase media[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2839-2851. | |
85 | RASHMI H R, DEVATHA C P. Review on solid-liquid separation using various conditioning methods[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1166(1): 012002. |
86 | Wei Sung NG, CONNAL Luke A, FORBES Elizaveta, et al. A review of temperature-responsive polymers as novel reagents for solid-liquid separation and froth flotation of minerals[J]. Minerals Engineering, 2018, 123: 144-159. |
87 | GOMES ALVES Denise, LUCENA BARBOSA JoséJr, COLATO ANTONIO Graziella, et al. Osmotic dehydration of acerola fruit (Malpighia punicifolia L.)[J]. Journal of Food Engineering, 2005, 68(1): 99-103. |
88 | NENU Romanus Krisantus TUE, YOSHIDA Hideto, FUKUI Kunihiro, et al. Separation performance of sub-micron silica particles by electrical hydrocyclone[J]. Powder Technology, 2009, 196(2): 147-155. |
89 | NENU Romanus Krisantus TUE, HAYASE Yuki, YOSHIDA Hideto, et al. Influence of inlet flow rate, pH, and beads mill operating condition on separation performance of sub-micron particles by electrical hydrocyclone[J]. Advanced Powder Technology, 2010, 21(3): 246-255. |
90 | LIU Lin, ZHAO Lixin, SUN Yian, et al. Separation performance of hydrocyclones with medium rearrangement internals[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105642. |
91 | AMAMI E, FERSI A, KHEZAMI L, et al. Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field[J]. LWT-Food Science and Technology, 2007, 40(7): 1156-1166. |
92 | HEJAZI Sima, PAHLAVANZADEH Hassan, ELLIOTT Janet A W. Thermodynamic investigation of the effect of electric field on solid-liquid equilibrium[J]. The Journal of Physical Chemistry B, 2021, 125(4): 1271-1281. |
93 | GONG Haifeng, YU Bao, DAI Fei, et al. Influence of electric field on water-droplet separated from emulsified oil in a double-field coupling device[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550: 27-36. |
94 | ZHANG Jianping, WANG Jiaqi, CHE Peng, et al. Numerical simulation on magnetic confinement characteristics of internal vortex electrostatic cyclone precipitator under different working voltages[J]. Particuology, 2023, 74: 156-163. |
95 | 吕宇玲, 田成坤, 何利民, 等. 电场和剪切场耦合作用下双液滴聚结数值模拟[J]. 石油学报, 2015, 36(2): 238-245. |
Yuling LÜ, TIAN Chengkun, HE Limin, et al. Numerical simulations on the double-droplets coalescence under the coupling effects of electric field and shearing field[J]. Acta Petrolei Sinica, 2015, 36(2): 238-245. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[6] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[7] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[8] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[9] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[10] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[11] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[12] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[13] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[14] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[15] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |