化工进展 ›› 2023, Vol. 42 ›› Issue (2): 559-574.DOI: 10.16085/j.issn.1000-6613.2022-1841
• 专栏:工业污泥/精馏釜残的热化学转化利用 • 上一篇 下一篇
杜金泽1,2(), 李源森1,2, 蔡思超1,2, 何林1,2(), 王成扬1, 李鑫钢1,2
收稿日期:
2022-10-08
修回日期:
2022-12-17
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
何林
作者简介:
杜金泽(1991—),男,博士后,研究方向为有机固废资源化与无害化转化。E-mail:tjdujinze@hotmail.com。
基金资助:
DU Jinze1,2(), LI Yuansen1,2, CAI Sichao1,2, HE Lin1,2(), WANG Chengyang1, LI Xingang1,2
Received:
2022-10-08
Revised:
2022-12-17
Online:
2023-02-25
Published:
2023-03-13
Contact:
HE Lin
摘要:
综述了化工精馏釜残危废的无害化处理技术以及不同种类及属性的化工精馏釜残特异的资源化利用方案和途径。从工程应用角度阐述和分析了精馏釜残不同的无害化处理技术的使用范畴、优缺点、技术现状和进展方向。根据不同精馏釜残的成分及物性特点,总结了不同种类精馏釜残的资源化利用方案。在此基础上针对目前产量大且组分复杂的酚基精馏釜残,提出对精馏釜残轻重组分进行多元化资源转化与无害化处理方案,并就此进行了综合分析,对精馏釜残资源化利用技术进行了初步的思考。
中图分类号:
杜金泽, 李源森, 蔡思超, 何林, 王成扬, 李鑫钢. 有机精馏釜残无害化处理与资源化转化研究进展与思考[J]. 化工进展, 2023, 42(2): 559-574.
DU Jinze, LI Yuansen, CAI Sichao, HE Lin, WANG Chengyang, LI Xingang. Recent advances and considerations for the harmless treatment and conversion of organic distillation residue[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 559-574.
行业来源 | 危险废物种类 | 精馏釜残所含组分 |
---|---|---|
石油化工业 | 石油精炼酸焦油和焦油 | 硫酸、磺酸、多环芳香烃、多环芳香烃低聚物 |
煤炭加工业 | 煤制气及煤气净化产生的焦油渣 | 萘、苊烯、芴、菲、荧蒽、蒽、芘等PAHs单体、沥青质 |
煤炼焦轻油和萘的回收、苯精制、储存及废水池焦油渣和污泥 | 萘、苊烯、芴、菲、荧蒽、蒽、芘等PAHs单体、 沥青质、煤灰、尘土 | |
焦炭生产过程及粗苯精制过程中产生的酸焦油、脱硫废液 | 硫酸、磺酸、多环芳香烃、多环芳香烃低聚物 | |
煤沥青改质过程中产生的闪蒸油 | 苯基萘、荧蒽、芘、苯基芴和䓛、氧芴、咔唑、二甲基蒽、等多环芳香烃 | |
燃气生产业 | 煤生气行业产生的煤焦油渣 | 萘、苊烯、芴、菲、荧蒽、蒽、芘等 PAHs单体、多环芳香烃 |
基础化工业 | 乙烯制乙醛产生的残渣和次要馏分 | 次馏分:氯甲烷、氯乙烷、丁醛、乙酸;残渣:低聚物 |
氯代物生产过程中的蒸馏残渣及重馏分 | 含氯多环芳香烃、胶质 | |
苯系物及含氮苯系物釜残及重馏分 | 多环芳香烃、含氮多环芳香烃 | |
使用羧酸肼生产 1,1-二甲基肼釜残 | 氰胺类化合物,含氯低聚物 | |
烯烃合成釜残及重组分 | 低聚聚合物、多环芳香烃 | |
醇类、羧酸类和酯类有机物釜残及重组分 | 低聚含氧聚合物、含氧多环芳香烃 | |
石墨及其他非金属矿物制造业 | 电解铝及其他有色金属电解精炼过程中预焙阳极、碳块及其他碳素制品制造过程烟气处理所产生的含焦油废物 | 氟化氢、含硫化合物、苯系物 |
环境治理业 | 废矿物油再生过程中产生的酸焦油 | 硫酸、磺酸、多环芳香烃、多环芳香烃、含氧胶质、 低聚物、泥沙 |
表 1 《国家危险废物名录》中精馏釜残的类别及所含组分[5]
行业来源 | 危险废物种类 | 精馏釜残所含组分 |
---|---|---|
石油化工业 | 石油精炼酸焦油和焦油 | 硫酸、磺酸、多环芳香烃、多环芳香烃低聚物 |
煤炭加工业 | 煤制气及煤气净化产生的焦油渣 | 萘、苊烯、芴、菲、荧蒽、蒽、芘等PAHs单体、沥青质 |
煤炼焦轻油和萘的回收、苯精制、储存及废水池焦油渣和污泥 | 萘、苊烯、芴、菲、荧蒽、蒽、芘等PAHs单体、 沥青质、煤灰、尘土 | |
焦炭生产过程及粗苯精制过程中产生的酸焦油、脱硫废液 | 硫酸、磺酸、多环芳香烃、多环芳香烃低聚物 | |
煤沥青改质过程中产生的闪蒸油 | 苯基萘、荧蒽、芘、苯基芴和䓛、氧芴、咔唑、二甲基蒽、等多环芳香烃 | |
燃气生产业 | 煤生气行业产生的煤焦油渣 | 萘、苊烯、芴、菲、荧蒽、蒽、芘等 PAHs单体、多环芳香烃 |
基础化工业 | 乙烯制乙醛产生的残渣和次要馏分 | 次馏分:氯甲烷、氯乙烷、丁醛、乙酸;残渣:低聚物 |
氯代物生产过程中的蒸馏残渣及重馏分 | 含氯多环芳香烃、胶质 | |
苯系物及含氮苯系物釜残及重馏分 | 多环芳香烃、含氮多环芳香烃 | |
使用羧酸肼生产 1,1-二甲基肼釜残 | 氰胺类化合物,含氯低聚物 | |
烯烃合成釜残及重组分 | 低聚聚合物、多环芳香烃 | |
醇类、羧酸类和酯类有机物釜残及重组分 | 低聚含氧聚合物、含氧多环芳香烃 | |
石墨及其他非金属矿物制造业 | 电解铝及其他有色金属电解精炼过程中预焙阳极、碳块及其他碳素制品制造过程烟气处理所产生的含焦油废物 | 氟化氢、含硫化合物、苯系物 |
环境治理业 | 废矿物油再生过程中产生的酸焦油 | 硫酸、磺酸、多环芳香烃、多环芳香烃、含氧胶质、 低聚物、泥沙 |
釜残类型 | 主要成分 | 复配合成方法 | 助剂应用 | 釜残利用率 | 发明单位或个人 参考文献 |
---|---|---|---|---|---|
渣油 | 多环芳烃等 | 渣油加水乳化 | 钻井润滑液 | 约100% | 缪明富等[ |
4-甲基吡啶釜残 | 4-甲基吡啶等 | 减压切分,60~160℃馏分 | 金属腐蚀抑制剂、缓蚀剂 | 约60% | 王曰礼[ |
4-甲基吡啶釜残 | 4-甲基吡啶等 | 4-甲基吡啶釜残与工业氯化苄反应后复配匀染剂、乙醇 | 钻井缓蚀剂 | ≥90% | 郑家燊 [ |
浮选油釜残 | 松节油等 | 250~300℃加入熔融次等松香[松香:釜残=1∶(2~3)] | 轮胎橡胶硫化用松焦油,橡胶软化剂 | 约100% | 吉林省敦化林业局科技办公室[ |
木浆浮油釜残 | 树脂酸、脂肪酸和中性物 | 与木浆浮油蒸馏轻组分一定比例混合 | 代替木焦油,橡胶软化剂 | 约100% | 金琦等[ |
三乙醇胺蒸馏釜残 | 四羟乙基乙二胺、一乙醇胺、二乙醇胺、三乙醇胺及其缩合物 | 与水以及表面活性剂复配 | 油田防垢剂 | 约100% | 金淑梅[ |
芳樟醇釜残液 | 半萜烯、芳樟醇等 | 无 | 塑料回收用,聚苯乙烯溶剂 | 约100% | 陈广明等[ |
十二烷基酚釜残 | 苯酚、苯雌酚、十二烷基酚、多侧链烷基酚 | 无 | 道路沥青增溶剂、增韧剂 | 约100% | 天津大学、广东新华粤 |
表2 化工精馏釜残直接复配作助剂总览
釜残类型 | 主要成分 | 复配合成方法 | 助剂应用 | 釜残利用率 | 发明单位或个人 参考文献 |
---|---|---|---|---|---|
渣油 | 多环芳烃等 | 渣油加水乳化 | 钻井润滑液 | 约100% | 缪明富等[ |
4-甲基吡啶釜残 | 4-甲基吡啶等 | 减压切分,60~160℃馏分 | 金属腐蚀抑制剂、缓蚀剂 | 约60% | 王曰礼[ |
4-甲基吡啶釜残 | 4-甲基吡啶等 | 4-甲基吡啶釜残与工业氯化苄反应后复配匀染剂、乙醇 | 钻井缓蚀剂 | ≥90% | 郑家燊 [ |
浮选油釜残 | 松节油等 | 250~300℃加入熔融次等松香[松香:釜残=1∶(2~3)] | 轮胎橡胶硫化用松焦油,橡胶软化剂 | 约100% | 吉林省敦化林业局科技办公室[ |
木浆浮油釜残 | 树脂酸、脂肪酸和中性物 | 与木浆浮油蒸馏轻组分一定比例混合 | 代替木焦油,橡胶软化剂 | 约100% | 金琦等[ |
三乙醇胺蒸馏釜残 | 四羟乙基乙二胺、一乙醇胺、二乙醇胺、三乙醇胺及其缩合物 | 与水以及表面活性剂复配 | 油田防垢剂 | 约100% | 金淑梅[ |
芳樟醇釜残液 | 半萜烯、芳樟醇等 | 无 | 塑料回收用,聚苯乙烯溶剂 | 约100% | 陈广明等[ |
十二烷基酚釜残 | 苯酚、苯雌酚、十二烷基酚、多侧链烷基酚 | 无 | 道路沥青增溶剂、增韧剂 | 约100% | 天津大学、广东新华粤 |
釜残类型 | 主要成分 | 复配合成方法 | 助剂应用 | 釜残利用率 | 参考文献 发明单位或个人 |
---|---|---|---|---|---|
玉米制醇工业釜残 | 山梨醇、二元醇、多元醇、多聚糖和有机酸等 | 除水、氨基磺酸催化磺化 | 水泥减水剂 | ≥90% | 吴洪发等[ |
渣油、环烷酸釜残 | 渣油、环烷酸等 | 渣油加水乳化;环烷酸釜残与碱液皂化反应 | 钻井润滑液;钻井液稳定剂 | 约100% | 缪明富等[ |
制药厂4-甲基吡啶釜残 | 大量吡啶类化合物 | 与盐酸反应上层生成物与OP乳化剂复配 | 钻井缓蚀剂 | 约90% | 四川省石油管理局天然气研究所[ |
制药厂4-甲基吡啶釜残 | 6-正丙基吡啶和6-乙基6-甲基毗咤 | 氯化苄和釜残反应后与甲醛的表面活性剂溶液复配 | 油井缓释液 | 约90% | 孙克忠[ |
表3 化工精馏釜残化学转化作助剂总览
釜残类型 | 主要成分 | 复配合成方法 | 助剂应用 | 釜残利用率 | 参考文献 发明单位或个人 |
---|---|---|---|---|---|
玉米制醇工业釜残 | 山梨醇、二元醇、多元醇、多聚糖和有机酸等 | 除水、氨基磺酸催化磺化 | 水泥减水剂 | ≥90% | 吴洪发等[ |
渣油、环烷酸釜残 | 渣油、环烷酸等 | 渣油加水乳化;环烷酸釜残与碱液皂化反应 | 钻井润滑液;钻井液稳定剂 | 约100% | 缪明富等[ |
制药厂4-甲基吡啶釜残 | 大量吡啶类化合物 | 与盐酸反应上层生成物与OP乳化剂复配 | 钻井缓蚀剂 | 约90% | 四川省石油管理局天然气研究所[ |
制药厂4-甲基吡啶釜残 | 6-正丙基吡啶和6-乙基6-甲基毗咤 | 氯化苄和釜残反应后与甲醛的表面活性剂溶液复配 | 油井缓释液 | 约90% | 孙克忠[ |
1 | STRATIEV Dicho, SHISHKOVA Ivelina, TANKOV Ivaylo, et al. Challenges in characterization of residual oils. A review[J]. Journal of Petroleum Science and Engineering, 2019, 178: 227-250. |
2 | DUAN Huabo, HUANG Qifei, WANG Qi, et al. Hazardous waste generation and management in China: A review[J]. Journal of Hazardous Materials, 2008, 158(2/3): 221-227. |
3 | KABE Toshiaki, ISHIHARA Atsushi, QIAN Eika Weihua, et al. Preface[M]//Coal and Coal-Related Compounds—Structures, Reactivity and Catalytic Reactions. Amsterdam: Elsevier, 2004. |
4 | 龚金双. 2015年中国石油市场回顾与2016年展望[J]. 中国石油和化工经济分析, 2016(4): 35-39. |
GONG Jinshuang. Review of China oil market in 2015 and prospect in 2016[J]. Economic Analysis of China Petroleum and Chemical Industry, 2016(4): 35-39. | |
5 | 国家危险废物名录(2021年版)[J]. 中华人民共和国国务院公报, 2021(4): 18-46. |
National list of hazardous wastes(2021)[J]. Gazette of the State Council of the People’s Republic of China, 2021(4): 18-46. | |
6 | 化工废渣填埋场设计规定: [S]. 1992-09-01. |
Regulations on design of landfill for waste slag in chemical industry: [S]. 1992-09-01. | |
7 | 国家环境保护总局. 危险废物填埋污染控制标准: [S]. 北京: 中国标准出版社, 2002. |
State Environmental Protection Administration of the People’s Republic of China. Standard for pollution control on the security landfill site for hazardous wastes: [S]. Beijing: Standards Press of China, 2002. | |
8 | 中华人民共和国工业和信息化部. 化工危险废物填埋场设计规定: [S]. 北京: 化学工业出版社, 2014. |
79 | TANG Guoxu, ZHANG Liqiang, ZHU Xiefei, et al. The preparation of activated carbon from walnut shell bio-oil distillation residues[J]. Carbon, 2020, 158: 930-931. |
80 | 丁军委, 于文龙, 于世涛, 等. 一种苯二胺生产中釜残焦油的资源化利用方法: CN109174073A[P]. 2019-01-11. |
DING Junwei, YU Wenlong, YU Shitao, et al. Resource utilization method of residual kettle tar in phenylenediamine production: CN109174073A[P]. 2019-01-11. | |
81 | 黄超, 黄忠英, 胡勇, 等. 一种利用植物精油蒸馏残渣制备碳点的方法: CN113086971A[P]. 2021-07-09. |
HUANG Chao, HUANG Zhongying, HU Yong, et al. Method for preparing carbon dots from plant essential oil distillation residues: CN113086971A[P]. 2021-07-09. | |
82 | 徐林, 孙诚, 丁克鸿, 等. 一种环氧氯丙烷精馏釜残合成环氧树脂的方法: CN111607067A[P]. 2020-09-01. |
XU Lin, SUN Cheng, DING Kehong, et al. Method for synthesizing epoxy resin from epoxy chloropropane rectification kettle residues: CN111607067A[P]. 2020-09-01. | |
83 | 李栋, 王玉华, 张秀菊. 对苯二甲酸二甲酯生产中釜残的利用: CN87102846A[P]. 1987-11-11. |
LI Dong, WANG Yuhua, ZHANG Xiuju. Utilization of still residues in the prodn. of dimethyl-tere-phthalate: CN87102846A[P]. 1987-11-11. | |
84 | 袁劭琦, 刘波, 袁致奇, 等. 玉米化工醇釜残废料制酚醛树脂的方法及酚醛树脂和应用: CN107915816A[P]. 2018-04-17. |
YUAN Shaoqi, LIU Bo, YUAN Zhiqi, et al. Method for preparing phenolic resin from kettle residual waste of corn chemical alcohol, phenolic resin and application: CN107915816A[P]. 2018-04-17. | |
85 | 符靓, 王文武,施树云, 等. 多羟甲基三聚氰胺及醚化氨基树脂绿色制备技术创新与产业化[Z]. 长江师范学院, 2019. |
8 | Ministry of Industry and Information of the People’s Republic of China. Code for design of chemical Hazardous wastes landfill: [S]. Beijing: Chemical Industry Press, 2014. |
9 | 国家环境保护总局. 危险废物焚烧污染控制标准: [S]. 2001-11-12. |
State Environmental Protection Administration of the People’s Republic of China. Pollution control standard for hazardous wastes incineration: [S]. 2001-11-12. | |
10 | 伉沛宇. 低能耗等离子体焚烧技术处理工业污泥的研究[J]. 中国建设信息(水工业市场), 2010(7): 22-25. |
KANG Peiyu. Study on treatment of industrial sludge by low-energy plasma incineration technology[J]. Information of China Construction (Water-Industry Market), 2010(7): 22-25. | |
11 | 四川石油管理局天然气研究所. 7623气井酸化复合缓蚀剂介绍[J]. 石油勘探与开发, 1978, 5(2): 91-93. |
Institute of Natural Gas Research, Sichuan Petroleum Administration Bureau. Introduction of compound corrosion inhibitor for acidizing of gas well 7623[J]. Petroleum Expoloration and Development, 1978, 5(2): 91-93. | |
12 | 郭志光, 马明磊, 刘斌, 等. 污泥处理处置技术研究进展[J]. 河北地质大学学报, 2019, 42(1): 59-63. |
GUO Zhiguang, MA Minglei, LIU Bin, et al. The research progress on sludge treatment and disposal technology[J]. Journal of Hebei GEO University, 2019, 42(1): 59-63. | |
13 | MANIOS T. The composting potential of different organic solid wastes: Experience from the island of Crete[J]. Environment International, 2004, 29(8): 1079-1089. |
14 | SALMINEN E, RINTALA J. Anaerobic digestion of organic solid poultry slaughterhouse waste—A review[J]. Bioresource Technology, 2002, 83(1): 13-26. |
15 | CHIN Sungmin, JURNG Jongsoo, LEE Jae-Heon, et al. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: A pilot plant experiment[J]. Waste Management, 2008, 28(12): 2684-2689. |
16 | 蒋学先. 浅论我国危险废物处理处置技术现状[J]. 金属材料与冶金工程, 2009, 37(4): 57-60. |
85 | FU L, WANG W W, SHI S Y, et al. Innovation and Industrialization of green preparation technology of polyhydroxymethyl melamine and etherified amino resin[Z]. Yangtze Normal University, 2019. |
86 | 重庆建峰浩康化工有限公司. 一种三羟甲基三聚氰胺与六羟甲基三聚氰胺联产方: CN201610465557.1[P]. 2016-11-16. |
Chongqing Jianfeng Haokang Chemical Co. Ltd.. A trihydroxymethyl melamine and six hydroxymethyl melamine co-production: CN201610 465557.1[P]. 2016-11-16. | |
87 | 重庆建峰浩康化工有限公司. 三羟甲基三聚氰胺的环保生产: CN201810320523.2[P]. 2018-08-24. |
Chongqing Jianfeng Haokang Chemical Co. Ltd.. Environmental protection production of trihydroxymethyl melamine: CN201810320523.2[P]. 2018-08-24. | |
88 | 重庆建峰浩康化工有限公司. 六羟甲基三聚氰胺的环保生产: CN201810321945.1[P]. 2018-10-02. |
Chongqing Jianfeng Haokang Chemical Co. Ltd.. Environmental protection production of HMP: CN201810321945.1[P]. 2018-10-02. | |
89 | 李连顺, 谢全安. 焦化酸焦油的处置利用[J]. 中国资源综合利用, 2011, 29(3): 39-40. |
LI Lianshun, XIE Quan’an. The disposal and utilization of coking acid tar[J]. China Resources Comprehensive Utilization, 2011, 29(3): 39-40. | |
90 | KOLMAKOV G A, ZANOZINA V F, KARATAEV E N, et al. Thermal cracking of acid tars to asphalts as a process for utilization of refinery wastes[J]. Petroleum Chemistry, 2006, 46(6): 384-388. |
91 | ZHOU Jing, LI Xingang, DU Jinze, et al. Conversion of phenolic mixture to refractory resins: A resourcezation strategy for phenolic distillation residues[J]. Journal of Hazardous Materials, 2021, 414: 125357. |
92 | 马媛, 杜金泽, 周静, 等. 酚基釜残深拔残渣分析及其热转化制备CO2吸附材料[J]. 化学工业与工程, 2021, 38(1): 43-52. |
MA Yuan, DU Jinze, ZHOU Jing, et al. Chemical analysis of the phenolic tar residue and its potential conversion to CO2 adsorbents by thermal treatment[J]. Chemical Industry and Engineering, 2021, 38(1): 43-52. | |
16 | JIANG Xuexian. Discussion on the current status of treatment and disposal technology for hazardous waste in our country[J]. Metal Materials and Metallurgy Engineering, 2009, 37(4): 57-60. |
17 | 国家环境保护总局. 危险废物填埋污染控制标准: [S]. 北京: 中国标准出版社, 2002. |
State Environmental Protection Administration of the People’s Republic of China. Standard for pollution control on the security landfill site for hazardous wastes: [S]. Beijing: Standards Press of China, 2002. | |
18 | 国家生态环境部. 危险废物安全填埋处置工程建设技术要求[S]. 环发[2004] 75号. 2004-04-30 |
Ministry of ecology and environment. Technical requirements for construction of hazardous waste safety landfill disposal project [S]. Huan fa [2004] No.75. 2004-04-30 | |
19 | 陈亮, 尤伟波. 危险废物安全填埋场总体布局研究[J]. 环境卫生工程, 2018, 26(4): 84-87. |
CHEN Liang, YOU Weibo. Study on the overall layout of hazardous waste security landfill sites[J]. Environmental Sanitation Engineering, 2018, 26(4): 84-87. | |
20 | 顾娅, 王丽佳, 戚水法, 等. 危险废物填埋场渗滤液固化处置效果评估[J]. 环境污染与防治, 2021, 43(1): 57-61, 66. |
GU Ya, WANG Lijia, QI Shuifa, et al. An evaluation of the solidification disposal of hazardous waste landfill leachate[J]. Environmental Pollution & Control, 2021, 43(1): 57-61, 66. | |
21 | 王东琴, 惠晓梅, 杨凯. 污泥处理处置技术进展[J]. 山西化工, 2016, 36(3): 17-19, 49. |
WANG Dongqin, HUI Xiaomei, YANG Kai. Research development of sludge treatment technology[J]. Shanxi Chemical Industry, 2016, 36(3): 17-19, 49. | |
22 | 刘志全, 李金惠, 聂永丰. 中国危险废物污染防治技术发展趋势与政策分析[J]. 中国环保产业, 2000(6): 15-17. |
LIU Zhiquan, LI Jinhui, NIE Yongfeng. Development trend and policy analysis on prevention and control technology of hazardous waste pollution in China[J]. China Environmental Protection Industry, 2000(6): 15-17. | |
23 | 苏肇基, 刘建国, 侯晨晨, 等. 含苯酚危险废物水泥/活性炭的固化稳定化[J]. 清华大学学报(自然科学版), 2009, 49(12): 1984-1987. |
SU Zhaoji, LIU Jianguo, HOU Chenchen, et al. Cement and activated carbon solidification and stabilization of phenol-containing hazardous waste[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(12): 1984-1987. | |
24 | 陈运启, 高波, 郝丽华, 等. 危险废物深度处置技术探索[J]. 化学工程与装备, 2020(4): 291-293. |
CHEN Yunqi, GAO Bo, HAO Lihua, et al. Exploration on advanced disposal technology of hazardous wastes[J]. Chemical Engineering & Equipment, 2020(4): 291-293. | |
25 | 韩雯雯, 滕少香. 垃圾焚烧处理技术的现状及发展趋势[J]. 中国资源综合利用, 2017, 35(6): 43-45. |
HAN Wenwen, TENG Shaoxiang. Present situation and development trend of waste incineration technology[J]. China Resources Comprehensive Utilization, 2017, 35(6): 43-45. | |
26 | 高洪才, 倪余文, 张海军, 等. 不同垃圾焚烧设备中二𫫇英的排放特征和I-TEQ指示物的研究[J]. 环境科学, 2009, 30(5): 1545-1550. |
GAO Hongcai, NI Yuwen, ZHANG Haijun, et al. PCDD/F emission characteristics in different waste incineration facilities and evaluation of 23478-PeCDF as I-TEQ indicator of PCDD/F in flue gases[J]. Environmental Science, 2009, 30(5): 1545-1550. | |
27 | 申巧蕊, 张超, 栗恒才, 等. 危险废物热解气化炉焚烧工程改造[J]. 中国环保产业, 2017(3): 61-63. |
SHEN Qiaorui, ZHANG Chao, LI Hengcai, et al. Incineration engineering reform on pyrolysis gasifier of hazardous wastes[J]. China Environmental Protection Industry, 2017(3): 61-63. | |
28 | 陈齐平, 谢陈平, 代恩岩. 危险废物焚烧熔融协同处置技术[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 天津, 2021: 474-477, 482. |
CHEN Q Q, XIE C P, DAI E Y. Incineration and melting co-disposal technology of hazardous waste[C]. Proceedings of the Chinese Society for Environmental Science and Technology Annual Conference 2021—Environmental Engineering Technology Innovation and Application Branch (ii). 2021: 474-477, 482. | |
29 | 乔贞, 邓国平, 钱超宏. 等离子炉处理危险废物的工艺研究[J]. 广东化工, 2019, 46(13): 151-153. |
QIAO Zhen, DENG Guoping, QIAN Chaohong. Study on the treatment of hazardous wastes by plasma furnace[J]. Guangdong Chemical Industry, 2019, 46(13): 151-153. | |
30 | 满卫东, 吴宇琼, 谢鹏. 等离子体技术——一种处理废弃物的理想方法[J]. 化学与生物工程, 2009, 26(5): 1-5. |
MAN Weidong, WU Yuqiong, XIE Peng. Plasma technology—An ideal method for waste treatment[J]. Chemistry & Bioengineering, 2009, 26(5): 1-5. | |
31 | 彭亚环. 热等离子体技术处理危险废物的应用[J]. 中国新技术新产品, 2020(16): 135-136. |
PENG Yahuan. Application of thermal plasma technology in hazardous waste treatment[J]. New Technology & New Products of China, 2020(16): 135-136. | |
32 | 耿荐. 浅论高温等离子炬在危废处理领域的产业化应用[J]. 节能与环保, 2020(S1): 111-112. |
GENG Jian. On the industrial application of high temperature plasma torch in the field of hazardous waste treatment[J]. Energy Conservation & Environmental Protection, 2020(S1): 111-112. | |
33 | 程虎, 韦耿, 李维成, 等. 等离子气化熔融技术在危险废物处理中的应用[J]. 中国资源综合利用, 2021, 39(1): 23-25. |
CHENG Hu, WEI Geng, LI Weicheng, et al. Application of plasma gasification and melting technology in hazardous waste treatment[J]. China Resources Comprehensive Utilization, 2021, 39(1): 23-25. | |
34 | 何淑娟. 环己胺精馏工艺改进[J]. 中国氯碱, 2003(10): 42-43. |
93 | GAO Pingqiang, ZHANG Yan, DU Jinze, et al. Preparation and application of porous activated carbon using phenolic distillation residue[J]. Journal of Materials Science, 2021, 56(30): 16902-16915. |
94 | 蔡思超, 周静, 杜金泽, 等. 煤化工酚基精馏釜残资源化利用过程初步分析[J]. 化工进展, 2022, 41(6): 3360-3371. |
CAI Sichao, ZHOU Jing, DU Jinze, et al. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371. | |
34 | HE Shujuan. Improvement of cyclohexylamine distillation process[J]. China Chlor-Alkali, 2003(10): 42-43. |
35 | 沈福昌, 沈建东. 精对苯二甲酸废渣的资源化处理方法: CN101513641[P]. 2009-08-26. |
SHEN Fuchang, SHEN Jiandong. Resourceful treatment method of purified terephthalic acid waste residue: CN101513641[P]. 2009-08-26. | |
36 | 李书奕, 魏峰, 杨焘, 等. 减压精馏分离苯甲酸釜残液的试验研究[J]. 化学工业与工程, 2007, 24(5): 408-411. |
LI Shuyi, WEI Feng, YANG Tao, et al. Separation of benzoic acid residua by vacuum distillation[J]. Chemical Industry and Engineering, 2007, 24(5): 408-411. | |
37 | 潘志彦, 厉凤旦. 聚氨酯合成革生产中DMF精馏釜残的特性及处理技术研究[J]. 浙江工业大学学报, 2014, 42(2): 157-161. |
PAN Zhiyan, LI Fengdan. Properties and deposal methods of DMF distillation dregs from production process of polyurethane leather[J]. Journal of Zhejiang University of Technology, 2014, 42(2): 157-161. | |
38 | 岳金方, 王芳, 黄杰军, 等. 二氯丙醇釜残处理工艺研究[J]. 广东化工, 2016, 43(15): 99-100. |
YUE Jinfang, WANG Fang, HUANG Jiejun, et al. Study on the treatment process of the residue of dichloropropanol[J]. Guangdong Chemical Industry, 2016, 43(15): 99-100. | |
39 | 黄子良. 精制TiCl4蒸馏釜残液水解回收处理研究[J]. 钛工业进展, 2008, 25(5): 35-36. |
HUANG Ziliang. Research on hydrolysis recycling of still bottoms during purifying TiCl4 [J]. Titanium Industry Progress, 2008, 25(5): 35-36. | |
40 | 李灿. 关于环戊酮釜残的处理工艺研究[J]. 中国化工贸易, 2015, 7(26): 255. |
LI Can. Study on the treatment technology of cyclopentanone kettle residue[J]. China Chemical Trade, 2015, 7(26): 255. | |
41 | 李华轩, 曹胜文, 王宇, 等. 一种三氯吡氧乙酸酯精馏残液资源化处理的方法: CN109232401A[P]. 2019-01-18. |
LI Huaxuan, CAO Shengwen, WANG Yu, et al. Method for carrying out resourceful treatment on triclopyr ester rectifying residual liquid: CN109232401A[P]. 2019-01-18. | |
42 | 潘志彦, 朱玲莎, 徐艳梅, 王亮, 郑昕. 一种利用聚氨酯合成革、DMF精馏釜残为原料制备的水煤浆及其制备方法: CN110699130A[P]. 2021-07-13. |
PAN Zhiyan, ZHU Lingsha, XU Yanmei, et al. Coal water slurry prepared by using polyurethane synthetic leather and DMF rectification kettle residues as raw materials and preparation method of coal water slurry: CN110699130A[P]. 2021-07-13. | |
43 | 官平东. 合成革精馏釜残资源化综合利用的方法: CN103613242A[P]. 2014-03-05. |
GUAN Pingdong. Method for recycling and comprehensively utilizing synthetic leather distillation kettle residue: CN103613242A[P]. 2014-03-05. | |
44 | GAO Haohua, WANG Gang, WANG Hao, et al. A conceptual catalytic cracking process to treat vacuum residue and vacuum gas oil in different reactors[J]. Energy & Fuels, 2012, 26(3): 1870-1879. |
45 | 罗运华, 刘以红, 刘国祥, 等. 大港减压渣油溶剂脱沥青研究[J]. 天然气与石油, 2002, 20(2): 43-47. |
LUO Yunhua, LIU Yihong, LIU Guoxiang, et al. Study on solvent deasphalting of Dagang vacuum residue[J]. Natural Gas and Oil, 2002, 20(2): 43-47. | |
46 | JOSHI Jyeshtharaj B, PANDIT Aniruddha B, KATARIA Kamal L, et al. Petroleum residue upgradation via visbreaking: A review[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 8960-8988. |
47 | 方向晨. 国内外渣油加氢处理技术发展现状及分析[J]. 化工进展, 2011, 30(1): 95-104. |
FANG Xiangchen. Development of residuum hydroprocessing technologies[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 95-104. | |
48 | 袁善录, 蔡梅, 韦孙昌, 等. 煤化工含油废弃物处置技术研究进展及开发应用[J]. 煤化工, 2021, 49(6): 75-78. |
YUAN Shanlu, CAI Mei, WEI Sunchang, et al. Research progress and development application of treatment technology of oil-containing wastes in coal chemical industry[J]. Coal Chemical Industry, 2021, 49(6): 75-78. | |
49 | 贺心才, 徐利军. 焦油渣的综合处理技术应用[J]. 当代化工研究, 2021(17): 65-66. |
HE Xincai, XU Lijun. Comprehensive processing technology of tar residue[J]. Modern Chemical Research, 2021(17): 65-66. | |
50 | 李昌伦, 马军祥, 林雄超, 等. 煤焦油渣处置技术现状与研究展望[J]. 现代化工, 2020, 40(11): 30-33, 38. |
LI Changlun, MA Junxiang, LIN Xiongchao, et al. Status and study prospect of coal tar residue disposal technology[J]. Modern Chemical Industry, 2020, 40(11): 30-33, 38. | |
51 | PRAJAPATI Ravindra, KOHLI Kirtika, MAITY Samir K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review[J]. Fuel, 2021, 288: 119686. |
52 | ISHIHARA Atsushi. Preparation and reactivity of hierarchical catalysts in catalytic cracking[J]. Fuel Processing Technology, 2019, 194: 106116. |
53 | 陈广明, 刘小兵, 赵小丽, 等. 精馏芳樟醇的釜残液溶解废弃聚苯乙烯泡沫的研究[J]. 化学研究, 2020, 31(3): 237-240. |
CHEN Guangming, LIU Xiaobing, ZHAO Xiaoli, et al. Study on the dissolution of waste polystyrene foams by residue of rectifying still for the production of linalool[J]. Chemical Research, 2020, 31(3): 237-240. | |
54 | 缪明富, 郭建平. 石油加工与石油化工废料应用于钻井液[J]. 油气田环境保护, 1995, 5(4): 12-19. |
MIAO Mingfu, GUO Jianping. Application of petroleum processing and petrochemical processing waste to drilling fluid[J]. Environmental Protection of Oil & Gas Fields, 1995, 5(4): 12-19. | |
55 | 金淑梅. 程序升温气相色谱法分析三乙醇胺蒸馏釜残[J]. 河南化工, 1992, 9(6): 25-28. |
JIN Shumei. Analysis of triethanolamine distillate residue by temperature programmed gas chromatography[J]. Henan Chemical Industry, 1992, 9(6): 25-28. | |
56 | 王曰礼. <1901>缓蚀剂介绍[J]. 陕西化工, 1982(3): 74. |
WANG Y L. Introduction of corrosion inhibitor <1901>[J]. Shaanxi Chemical Industry, 1982(3): 74 | |
57 | 郑家燊, 张琼玖, 丁诗健, 等. “7701”酸化缓酸剂的研究[J]. 华中工学院学报, 1982, 10(1): 47-56. |
ZHENG Jiashen, ZHANG Qiongjiu, DING Shijian, et al. The acidizing inhibitor “7701”[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 1982, 10(1): 47-56. | |
58 | 吉林省敦化林业局科技办公室. 利用浮选油釜残试制松焦油[J]. 林化科技, 1979, 13(4): 246-247. |
Dunhua Forestry Bureau Science and Technology Office, Province Jilin. Trial-production of pine tar by residue of flotation oil kettle[J]. Biomass Chemical Engineering, 1979, 13(4): 246-247. | |
59 | 金琦, 赵树森, 郑志方, 等. 木浆浮油脱色与精制的研究[J]. 东北林业大学学报, 1989, 17(1): 45-49. |
JIN Qi, ZHAO Shusen, ZHENG Zhifang, et al. Study on decoloring methods and refined of tall oil[J]. Journal of Northeast Forestry University, 1989, 17(1): 45-49. | |
60 | 蒋校, 姜红来, 韩勇, 等. 氯化苄精馏残液资源化利用的工艺研究[J]. 淮海工学院学报(自然科学版), 2019, 28(3): 35-37. |
JIANG Xiao, JIANG Honglai, HAN Yong, et al. Study on the resource utilization of benzyl chloride rectified residue[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2019, 28(3): 35-37. | |
61 | УЛЪЯНЕНКО В И, 阎吉昌, 王一尘. 利用合成脂肪酸釜残制取表面活性剂[J]. 日用化学品科学, 1983, 6(3): 30-33. |
УЛЪЯНЕНКО В И, YAN Jichang, WANG Yichen. Preparation of surfactant from the residue of synthetic fatty acid kettle[J]. Detergent & Cosmetics, 1983, 6(3): 30-33. | |
62 | 姆·斯·鲍尔茨, 柴文淼. 糠醛催化加氢制造糠烷[J]. 林化科技通讯, 1984, 18(5): 167-170. |
BOLZ M S, CHAI W M. Catalytic hydrogenation of furfural to furfuryl[J]. Biomass Chemical Engineering, 1984, 18(5): 167-170. | |
63 | GHOLAMI Zahra, GHOLAMI Fatemeh, Zdeněk TIŠLER, et al. A review on production of light olefins via fluid catalytic cracking[J]. Energies, 2021, 14(4): 1089. |
64 | KUMAR Sachin, PANDA Achyut K, SINGH R K. A review on tertiary recycling of high-density polyethylene to fuel[J]. Resources, Conservation and Recycling, 2011, 55(11): 893-910. |
65 | 吴洪发, 贺红, 薛冬桦. 玉米化工醇釜残物用作高效减水剂的分散性能[J]. 新型建筑材料, 2011, 38(11): 79-82. |
WU Hongfa, HE Hong, XUE Donghua. Dispersion of bio-based polyols residue as superplasticizer[J]. New Building Materials, 2011, 38(11): 79-82. | |
66 | 孙克忠, 王宝才, 许国华, 等. 具有阳离子表面活性的吡啶釜残反应产物作为酸化缓蚀剂[J]. 陕西化工, 1981, 10(1): 1-6. |
SUN Kezhong, WANG Baocai, XU Guohua, et al. Pyridine residue reaction product with cationic surface activity is used as acidification inhibitor[J]. Shaanxi Chemical Industry, 1981, 10(1): 1-6. | |
67 | DIAS Joana M, ALVIM-FERRAZ Maria C M, ALMEIDA Manuel F, et al. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review[J]. Journal of Environmental Management, 2007, 85(4): 833-846. |
68 | HAN Joah, KWON Jeong Heo, LEE Jae-Won, et al. An effective approach to preparing partially graphitic activated carbon derived from structurally separated pitch pine biomass[J]. Carbon, 2017, 118: 431-437. |
69 | XIE Lijing, TANG Cheng, BI Zhihong, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650. |
70 | YANG Kap Seung, KIM Bo-Hye, YOON Seong-Ho. Pitch based carbon fibers for automotive body and electrodes[J]. Carbon Letters, 2014, 15(3): 162-170. |
71 | HALIM Humala Paulus, Ji Sun IM, LEE Chul Wee. Preparation of needle coke from petroleum by-products[J]. Carbon Letters, 2013, 14(3): 152-161. |
72 | ZHANG Zhichen, LOU Bin, ZHAO Ning, et al. Co-carbonization behavior of the blended heavy oil and low temperature coal tar for the preparation of needle coke[J]. Fuel, 2021, 302: 121139. |
73 | LIU Jinchang, CHEN Xujun, LIANG Dingcheng, et al. Development of pitch-based carbon fibers: A review[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-21. |
74 | HASSAN Muhammad Faheem, SABRI Muhammad Ashraf, FAZAL Hammad, et al. Recent trends in activated carbon fibers production from various precursors and applications—A comparative review[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104715. |
75 | HIREMATH Nitilaksha, MAYS Jimmy, BHAT Gajanan. Recent developments in carbon fibers and carbon nanotube-based fibers: A review[J]. Polymer Reviews, 2017, 57(2): 339-368. |
76 | LIANG Aihua, XU Tinghao, LIOU Sin, et al. Silicon single walled carbon nanotube-embedded pitch-based carbon spheres prepared by a spray process with modified antisolvent precipitation for lithium ion batteries[J]. Energy & Fuels, 2021, 35(11): 9705-9713. |
77 | WANG Feng, JIAO Shouhui, LIU Wenchao, et al. Preparation of mesophase carbon microbeads from fluidized catalytic cracking residue oil: The effect of active structures on their coalescence[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105166. |
78 | KIM Ju Hyeong, PARK Gi Dae, KANG Yun chan. Synthesis of yolk-shell-structured iron monosulfide-carbon microspheres and understanding of their conversion reaction for potassium-ion storage[J]. International Journal of Energy Research, 2021, 45(10): 14910-14919. |
[1] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[2] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[3] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[4] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[5] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[6] | 陈伟良, 高鑫, 李洪, 李鑫钢. 泡沫碳化硅波纹规整填料骨架结构对其传质性能的影响机理[J]. 化工进展, 2023, 42(5): 2289-2297. |
[7] | 汪东, 于品华, 陈斌, 肖昂, 陈锋, 江洋洋. 环己酮生产中的环己烷三效精馏节能优化[J]. 化工进展, 2023, 42(5): 2245-2251. |
[8] | 向晟, 王超, 庄钰, 顾偲雯, 张磊, 都健. 变压精馏分离乙酸甲酯-甲醇-乙酸乙酯体系的设计与控制[J]. 化工进展, 2022, 41(8): 4065-4076. |
[9] | 代敏, 杨福胜, 张早校, 刘桂莲, 冯霄. 基于多策略集成优化算法的己烷油精馏过程3E多目标优化[J]. 化工进展, 2022, 41(6): 2852-2863. |
[10] | 蔡思超, 周静, 杜金泽, 李方舟, 李源森, 何林, 李鑫钢, 王成扬. 煤化工酚基精馏釜残资源化利用过程初步分析[J]. 化工进展, 2022, 41(6): 3360-3371. |
[11] | 李春利, 田昕, 李浩, 胡雨奇. 高沸点热敏体系精馏过程的研究进展[J]. 化工进展, 2022, 41(4): 1704-1714. |
[12] | 韩文韬, 韩振为, 李洪, 高鑫, 李鑫钢. 乙酰丙酸乙酯的反应精馏模型及隔壁塔节能优化设计[J]. 化工进展, 2022, 41(4): 1759-1769. |
[13] | 于斌, 刘春晖, 郑广强, 曲广, 魏永泰, 王红星. 热集成变压精馏乙二醇脱水系统的控制方案优化[J]. 化工进展, 2021, 40(S2): 56-63. |
[14] | 车景华, 王子健. 热泵精馏在柴油加氢装置与干气提浓装置热联合上的应用分析[J]. 化工进展, 2021, 40(S1): 27-31. |
[15] | 王玉春, 张志浩, 高源, 李忠, 郑华艳. DMC-甲醇-水三元混合物的萃取精馏分离工艺[J]. 化工进展, 2021, 40(8): 4196-4204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |