化工进展 ›› 2022, Vol. 41 ›› Issue (12): 6489-6499.DOI: 10.16085/j.issn.1000-6613.2022-0445
江汝清1,2(), 余广炜1(), 王玉1,2, 黎长江1, 邢贞娇1
收稿日期:
2022-03-22
修回日期:
2022-04-18
出版日期:
2022-12-20
发布日期:
2022-12-29
通讯作者:
余广炜
作者简介:
江汝清(1996—),女,硕士,研究方向为固废处置。E-mail:rqjiang@iue.ac.cn。
基金资助:
JIANG Ruqing1,2(), YU Guangwei1(), WANG Yu1,2, LI Changjiang1, XING Zhenjiao1
Received:
2022-03-22
Revised:
2022-04-18
Online:
2022-12-20
Published:
2022-12-29
Contact:
YU Guangwei
摘要:
以直接红23染料(DR23)溶液模拟印染废水,对比分析了酸改性前后猪粪生物炭对DR23的吸附特性与机理。通过静态吸附实验考察了DR23溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂添加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学和吸附等温线。研究发现,相比于未改性生物炭(PMB),酸改性后生物炭(PMBacid)结构变得疏松多孔,表面官能团丰富,表现出更优的脱色性能,对DR23的吸附去除率最高可达96.10%,最大饱和吸附量为111.51mg/g,且在经过3次循环再生后,PMBacid对DR23的去除率仍可达到88.31%;此外,pH对PMBacid的脱色吸附性能影响较小。PMBacid对DR23的吸附是一个受反应速率和扩散控制的复杂过程,符合于伪二级动力学模型和Langmuir等温吸附模型;PMBacid对DR23的吸附机理取决于吸附剂的物理化学性质,其孔结构及各官能团通过不同的机制参与了生物炭对DR23的吸附过程。
中图分类号:
江汝清, 余广炜, 王玉, 黎长江, 邢贞娇. 酸改性猪粪生物炭的制备及其对直接红23染料的吸附性能[J]. 化工进展, 2022, 41(12): 6489-6499.
JIANG Ruqing, YU Guangwei, WANG Yu, LI Changjiang, XING Zhenjiao. Preparation of acid-modified pig manure biochar and its adsorption performance on Direct Red 23[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6489-6499.
参数 | 数值 |
---|---|
工业分析(干基,质量分数) | |
灰分/% | 19.22 |
挥发分/% | 66.98 |
固定碳/% | 13.80 |
元素分析(干基,质量分数) | |
C/% | 38.11 |
H/% | 6.03 |
N/% | 4.21 |
S/% | 0.79 |
pH | 7.05 |
电导率(EC) | 3.06 |
阳离子交换量(CEC)/cmol·kg-1 | 92.04 |
孔隙结构 | |
BET比表面积/m2·g-1 | 1.0315 |
总孔体积/cm3·g-1 | 0.0075 |
平均孔直径/nm | 26.4431 |
表1 猪粪的基本性质
参数 | 数值 |
---|---|
工业分析(干基,质量分数) | |
灰分/% | 19.22 |
挥发分/% | 66.98 |
固定碳/% | 13.80 |
元素分析(干基,质量分数) | |
C/% | 38.11 |
H/% | 6.03 |
N/% | 4.21 |
S/% | 0.79 |
pH | 7.05 |
电导率(EC) | 3.06 |
阳离子交换量(CEC)/cmol·kg-1 | 92.04 |
孔隙结构 | |
BET比表面积/m2·g-1 | 1.0315 |
总孔体积/cm3·g-1 | 0.0075 |
平均孔直径/nm | 26.4431 |
有机染料 | 分子式 | 分子量 | 离子性 | 分子结构 |
---|---|---|---|---|
DR23 | C35H25N7Na2O10S2 | 813.72 | 阴离子 |
表2 DR23的理化性质
有机染料 | 分子式 | 分子量 | 离子性 | 分子结构 |
---|---|---|---|---|
DR23 | C35H25N7Na2O10S2 | 813.72 | 阴离子 |
生物炭 | 温度/℃ | Freundlich方程式(3) | Langmuir方程式(4) | ||||
---|---|---|---|---|---|---|---|
Kf | 1/n | R2 | b | qm | R2 | ||
PMB | 25 | 14.68 | 0.01302 | -0.22 | 0.64 | 15.89 | 0.97 |
35 | 21.21 | 0.01433 | -0.24 | 0.25 | 18.32 | 0.97 | |
45 | 21.73 | 0.00366 | -0.24 | 0.36 | 20.68 | 0.96 | |
PMBacid | 25 | 41.48 | 0.22907 | 0.94 | 0.31 | 105.82 | 0.99 |
35 | 49.51 | 0.19545 | 0.97 | 0.41 | 108.17 | 0.99 | |
45 | 58.12 | 0.16298 | 0.97 | 0.47 | 111.51 | 0.99 |
表3 不同温度下DR23吸附等温线拟合参数
生物炭 | 温度/℃ | Freundlich方程式(3) | Langmuir方程式(4) | ||||
---|---|---|---|---|---|---|---|
Kf | 1/n | R2 | b | qm | R2 | ||
PMB | 25 | 14.68 | 0.01302 | -0.22 | 0.64 | 15.89 | 0.97 |
35 | 21.21 | 0.01433 | -0.24 | 0.25 | 18.32 | 0.97 | |
45 | 21.73 | 0.00366 | -0.24 | 0.36 | 20.68 | 0.96 | |
PMBacid | 25 | 41.48 | 0.22907 | 0.94 | 0.31 | 105.82 | 0.99 |
35 | 49.51 | 0.19545 | 0.97 | 0.41 | 108.17 | 0.99 | |
45 | 58.12 | 0.16298 | 0.97 | 0.47 | 111.51 | 0.99 |
染料 | 吸附剂 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|
DR23 | PMB | 20.68 | 本研究 |
DR23 | PMBacid | 111.51 | 本研究 |
DR23 | 猪粪生物炭 | 17.82 | [ |
DR23 | 污泥生物炭 | 111.98 | [ |
直接红80 | 大蒜秸秆 | 107.53 | [ |
直接红80 | 杏仁壳 | 20.5 | [ |
刚果红 | 斜发沸石 | 16.90 | [ |
刚果红 | 铁改性斜发沸石 | 36.70 | [ |
表4 几种吸附剂的吸附能力对比
染料 | 吸附剂 | 吸附能力/mg·g-1 | 参考文献 |
---|---|---|---|
DR23 | PMB | 20.68 | 本研究 |
DR23 | PMBacid | 111.51 | 本研究 |
DR23 | 猪粪生物炭 | 17.82 | [ |
DR23 | 污泥生物炭 | 111.98 | [ |
直接红80 | 大蒜秸秆 | 107.53 | [ |
直接红80 | 杏仁壳 | 20.5 | [ |
刚果红 | 斜发沸石 | 16.90 | [ |
刚果红 | 铁改性斜发沸石 | 36.70 | [ |
生物炭 | qe,exp/mg·g-1 | 伪一级动力学方程式(5) | 伪二级动力学方程式(6) | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | qcal/mg·g-1 | R2 | k2/g·mg-1·min-1 | qcal/mg·g-1 | R2 | ||
PMB | 15.01 | 0.03 | 10.49 | 0.8765 | 6.80×10-3 | 15.54 | 0.9983 |
PMBacid | 38.18 | 0.06 | 26.04 | 0.8460 | 7.95×10-3 | 38.62 | 0.9996 |
表5 生物炭吸附DR23的伪一级、伪二级动力学参数
生物炭 | qe,exp/mg·g-1 | 伪一级动力学方程式(5) | 伪二级动力学方程式(6) | ||||
---|---|---|---|---|---|---|---|
k1/min-1 | qcal/mg·g-1 | R2 | k2/g·mg-1·min-1 | qcal/mg·g-1 | R2 | ||
PMB | 15.01 | 0.03 | 10.49 | 0.8765 | 6.80×10-3 | 15.54 | 0.9983 |
PMBacid | 38.18 | 0.06 | 26.04 | 0.8460 | 7.95×10-3 | 38.62 | 0.9996 |
生物炭 | 比表面积/m2·g-1 | 总孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
PMB | 2.1775 | 0.0109 | 14.8857 |
PMB-ad | 1.7825 | 0.0135 | 12.4721 |
PMBacid | 85.8710 | 0.0850 | 4.0232 |
PMBacid-ad | 84.6621 | 0.0952 | 3.9592 |
表6 生物炭吸附DR23前后的孔径结构
生物炭 | 比表面积/m2·g-1 | 总孔体积/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
PMB | 2.1775 | 0.0109 | 14.8857 |
PMB-ad | 1.7825 | 0.0135 | 12.4721 |
PMBacid | 85.8710 | 0.0850 | 4.0232 |
PMBacid-ad | 84.6621 | 0.0952 | 3.9592 |
1 | 秦翠兰, 王磊元, 刘飞, 等. 畜禽粪便生物质资源利用的现状与展望[J]. 农机化研究, 2015, 37(6): 234-238. |
QIN Cuilan, WANG Leiyuan, LIU Fei, et al. Status and prospects of livestock manure utilization of biomass resources[J]. Journal of Agricultural Mechanization Research, 2015, 37(6): 234-238. | |
2 | 王广, 曾加其, 王丹凤. 畜禽粪污综合利用模式探讨[J]. 畜禽业, 2021, 32(1): 28. |
WANG Guang, ZENG Jiaqi, WANG Danfeng. Comprehensive utilization model of livestock and poultry manure [J]. Livestock and Poultry Industry, 2021, 32(1): 28. | |
3 | CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. |
4 | 张祖康. 污水处理场废渣的减量和资源化[J]. 石油化工环境保护, 2000(3): 1-5. |
ZHANG Z K. Decreasing and utilizing waste sludge of wastewater treatment plant[J]. Environment Protection in Petrochemical Industry, 2000(3): 1-5. | |
5 | 蔺丽丽, 蒋文举, 金燕, 等. 微波法制备污泥活性炭研究[J]. 环境工程学报, 2007, 1(4): 119-122. |
LIN Lili, JIANG Wenju, JIN Yan, et al. Study on activated carbon made from sewage sludge by microwave[J]. Chinese Journal of Environmental Engineering, 2007, 1(4): 119-122. | |
6 | GONZÁLEZ-GUTIÉRREZ L V, GONZÁLEZ-ALATORRE G, ESCAMILLA-SILVA E M. Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor[J]. World Journal of Microbiology and Biotechnology, 2009, 25(3): 415-426. |
7 | ARDEJANI F D, BADII K, LIMAEE N Y, et al. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type[J]. Journal of Hazardous Materials, 2008, 151(2/3): 730-737. |
8 | KALLEL F, BOUAZIZ F, CHAARI F, et al. Interactive effect of garlic straw on the sorption and desorption of Direct Red 80 from aqueous solution[J]. Process Safety and Environmental Protection, 2016, 102: 30-43. |
9 | AHMAD A L, PUASA S W, ZULKALI M M D. Micellar-enhanced ultrafiltration for removal of reactive dyes from an aqueous solution[J]. Desalination, 2006, 191(1/2/3): 153-161. |
10 | ALVENTOSA-DELARA E, BARREDO-DAMAS S, ALCAINA-MIRANDA M I, et al. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance[J]. Journal of Hazardous Materials, 2012, 209/210: 492-500. |
11 | KIM T H, PARK C, YANG J, et al. Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation[J]. Journal of Hazardous Materials, 2004, 112(1/2): 95-103. |
12 | SZPYRKOWICZ L, JUZZOLINO C, KAUL S N. A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent[J]. Water Research, 2001, 35(9): 2129-2136. |
13 | NOROOZI B, SORIAL G A. Applicable models for multi-component adsorption of dyes: a review[J]. Journal of Environmental Sciences, 2013, 25(3): 419-429. |
14 | SADEGH H, ALI G A M, GUPTA V K, et al. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment[J]. Journal of Nanostructure in Chemistry, 2017, 7(1): 1-14. |
15 | SUZAIMI N D, GOH P S, MALEK N A N N, et al. Enhancing the performance of porous rice husk silica through branched polyethyleneimine grafting for phosphate adsorption[J]. Arabian Journal of Chemistry, 2020, 13(8): 6682-6695. |
16 | AHMADI Z, RAMEZANI H, AZIZI S N, et al. Synthesis of zeolite NaY supported Mn-doped ZnS quantum dots and investigation of their photodegradation ability towards organic dyes[J]. Environmental Science and Pollution Research International, 2020, 27(9): 9707-9717. |
17 | ALAKHRAS F, ALHAJRI E, HAOUNATI R, et al. A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites[J]. Surfaces and Interfaces, 2020, 20: 100611. |
18 | BOUDECHICHE N, FARES M, OUYAHIA S, et al. Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones[J]. Microchemical Journal, 2019, 146: 1010-1018. |
19 | OTERO M, ROZADA F, CALVO L F, et al. Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges[J]. Biochemical Engineering Journal, 2003, 15(1): 59-68. |
20 | SMITH K M, FOWLER G D, PULLKET S, et al. Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications[J]. Water Research, 2009, 43(10): 2569-2594. |
21 | 龚真萍, 赵红, 郑永杰, 等. 生物炭材料的制备及其在印染废水处理中的应用[J]. 染整技术, 2021, 43(12): 1-4. |
GONG Zhenping, ZHAO Hong, ZHENG Yongjie, et al. Preparation of biochar material and its application in dyeing and printing wastewater treatment[J]. Textile Dyeing and Finishing Journal, 2021, 43(12): 1-4. | |
22 | 朱国婷, 邢献军, 汪家权, 等. 酸预处理活性炭对废水染料的吸附研究[J]. 环境科学与技术, 2016, 39(S2): 160-165. |
ZHU Guoting, XING Xianjun, WANG Jiaquan, et al. Study on the adsorption of dyes in wastewater on activated carbon pre-treated with acid[J]. Environmental Science & Technology, 2016, 39(S2): 160-165. | |
23 | 张志芳, 邵红, 孔祥西, 等. 花生壳活性炭的制备及其对染料废水的脱色性能研究[J]. 沈阳化工大学学报, 2014, 28(2): 130-136. |
ZHANG Zhifang, SHAO Hong, KONG Xiangxi, et al. Decoloring capability of activated carbon from peanut shell to dye wastewater[J]. Journal of Shenyang University of Chemical Technology, 2014, 28(2): 130-136. | |
24 | 孙良媛, 刘涛, 张乐. 中国规模化畜禽养殖的现状及其对生态环境的影响[J]. 华南农业大学学报(社会科学版), 2016, 15(2): 23-30. |
SUN Liangyuan, LIU Tao, ZHANG Le. The pollution of scale livestock and poultry breeding and its influence on eco-environment[J]. Journal of South China Agricultural University (Social Science Edition), 2016, 15(2): 23-30. | |
25 | 武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103-111. |
WU Shuxia, LIU Hongbin, HUANG Hongkun, et al. Analysis on the amount and utilization of manure in livestock and poultry breeding in China[J]. Engineering Science, 2018, 20(5): 103-111. | |
26 | CHLOPIN W, BALANDIN A. Über Die adsorption des bariumchlorids durch das kolloidale mangansuperoxydhydrat in wäßrigen lösungen[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 149(1): 157-166. |
27 | LANGMUIR I. The constitution and fundamental properties of solids and liquids[J]. Journal of the Franklin Institute, 1917, 183(1): 102-105. |
28 | AKSU Z. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling[J]. Biochemical Engineering Journal, 2001, 7(1): 79-84. |
29 | HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5): 451-465. |
30 | NAUTIYAL P, SUBRAMANIAN K A, DASTIDAR M G. Adsorptive removal of dye using biochar derived from residual algae after in situ transesterification: alternate use of waste of biodiesel industry[J]. Journal of Environmental Management, 2016, 182: 187-197. |
31 | AKGÜL M. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe3+-grafting[J]. Journal of Hazardous Materials, 2014, 267: 1-8. |
32 | LIU N, ZHU M L, WANG H, et al. Adsorption characteristics of Direct Red 23 from aqueous solution by biochar[J]. Journal of Molecular Liquids, 2016, 223: 335-342. |
33 | JIANG R Q, YU G W, NDAGIJIMANA P, et al. Effective adsorption of direct Red 23 by sludge biochar-based adsorbent: adsorption kinetics, thermodynamics and mechanisms study[J]. Water Science and Technology, 2021, 83(10): 2424-2436. |
34 | REN X L, LAI X H, ZHU K J, et al. Removal of acid turquoise blue 2G from aqueous solution by adsorbent derived from sludge and straw: kinetic, isotherm and thermodynamic study[J]. Desalination and Water Treatment, 2016, 57(1): 440-448. |
35 | SUN Y B, DING C C, CHENG W C, et al. Simultaneous adsorption and reduction of U( Ⅵ ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280: 399-408. |
36 | VADIVELAN V, KUMAR K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk[J]. Journal of Colloid and Interface Science, 2005, 286(1): 90-100. |
37 | 韩闯. 污泥生物炭水热制备及其对染料脱色研究[D]. 上海: 东华大学, 2017. |
HAN Chuang. Preparation of sludge biochar and its decolorization of dye[D]. Shanghai: Donghua University, 2017. | |
38 | KANG J, ZHANG H Y, DUAN X G, et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants[J]. Chemical Engineering Journal, 2019, 362: 251-261. |
39 | 王泽庆, 朱耀辉, 仲茜溪, 等. 南疆棉花秸秆生物炭对水中亚甲基蓝的吸附特性[J]. 广东化工, 2020, 47(5): 22-26. |
WANG Z Q, ZHU Y H, ZHONG X X, et al. Adsorption characteristics of aqueous methylene blue by biochar pyrolyzed from cotton straw in south Xinjiang[J]. Guangdong Chemical Industry, 2020, 47(5): 22-26. | |
40 | YAO Y, ZHANG Y, GAO B, et al. Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse[J]. Environmental Science and Pollution Research International, 2018, 25(26): 25659-25667. |
41 | LUO F, CHEN Z L, MEGHARAJ M, et al. Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel[J]. Chemical Engineering Journal, 2016, 294: 290-297. |
42 | WENG X L, LIN S, ZHONG Y H, et al. Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 229: 27-34. |
43 | GONG J, LIU J, JIANG Z W, et al. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2015, 445: 195-204. |
44 | SONG X D, XUE X Y, CHEN D Z, et al. Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 2014, 109: 213-220. |
45 | 陈思. 污泥-稻壳共热解及生物炭吸附特性研究[D]. 武汉: 武汉大学, 2019. |
CHEN Si. Study on the co-pyrolysis of sludge-rice hull and the adsorption properties of biochar[D]. Wuhan: Wuhan University, 2019. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[13] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |