化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 485-496.DOI: 10.16085/j.issn.1000-6613.2022-0255
陈钰1(), 刘冲1, 邱于荟1, 贲梓欣1, 牟天成2()
收稿日期:
2022-02-17
修回日期:
2022-04-17
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
陈钰,牟天成
作者简介:
陈钰(1988—),男,讲师,博士,研究方向为物理化学。E-mail:yuchen@iccas.ac.cn。
基金资助:
CHEN Yu1(), LIU Chong1, QIU Yuhui1, BI Zixin1, MU Tiancheng2()
Received:
2022-02-17
Revised:
2022-04-17
Online:
2022-10-20
Published:
2022-11-10
Contact:
CHEN Yu, MU Tiancheng
摘要:
温和条件下废旧锂离子电池的绿色高效回收具有重大意义,目前利用离子液体和低共熔溶剂回废旧收锂离子电池的综述报道较少。本综述回顾近年离子液体和低共熔溶剂回收废旧锂离子电池,分析离子液体和低共熔溶剂对不同锂离子电池正极材料回收的差异性,介绍绿色溶剂结构、酸碱性、电池组成、温度、时间、质量比等因素对回收的影响,归纳绿色溶剂回收废旧锂离子电池的热力学和动力学规律及其溶解机制,并指出利用离子液体和低共熔溶剂回收废旧锂离子电池目前存在的一些问题及其提出可能的应对策略。
中图分类号:
陈钰, 刘冲, 邱于荟, 贲梓欣, 牟天成. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496.
CHEN Yu, LIU Chong, QIU Yuhui, BI Zixin, MU Tiancheng. Ionic liquids and deep eutectic solvents for green recycle of spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496.
萃取剂缩写 | 萃取剂中文名 | 价格 /USD·kg-1 | 钴镍分离比 | (原始钴/镍溶液浓度) /g·L-1 | 稀释剂 | 参考文献 |
---|---|---|---|---|---|---|
Cyanex 272 | 双(2,4,4-三甲基戊基)膦酸 | 1~160 | 750 | 14/15 | 煤油 | [ |
PC88A | 2-乙基己基膦酸单-2-乙基已酯 | 6~8 | 42 | 21/1 | 煤油 | [ |
D2EHPA | 二(2-乙基己基)磷酸 | 2~30 | 14 | — | 煤油 | [ |
[P8888][Oleate] | 四辛基膦油酸型离子液体 | 10 | 30000 | 15/21 | — | [ |
表1 离子液体[P8888][Oleate]与其他萃取剂的钴镍分离比、价格及稀释剂[39]
萃取剂缩写 | 萃取剂中文名 | 价格 /USD·kg-1 | 钴镍分离比 | (原始钴/镍溶液浓度) /g·L-1 | 稀释剂 | 参考文献 |
---|---|---|---|---|---|---|
Cyanex 272 | 双(2,4,4-三甲基戊基)膦酸 | 1~160 | 750 | 14/15 | 煤油 | [ |
PC88A | 2-乙基己基膦酸单-2-乙基已酯 | 6~8 | 42 | 21/1 | 煤油 | [ |
D2EHPA | 二(2-乙基己基)磷酸 | 2~30 | 14 | — | 煤油 | [ |
[P8888][Oleate] | 四辛基膦油酸型离子液体 | 10 | 30000 | 15/21 | — | [ |
1 | SERVICE Robert F. Lithium-ion battery development takes Nobel[J]. Science, 2019, 366(6463): 292. |
2 | MA Linlin, HOU Baoxiu, SHANG Ningzhao, et al. The precise synthesis of twin-born Fe3O4/FeS/carbon nanosheets for high-rate lithium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(12): 4579-4588. |
3 | HARPER Gavin, SOMMERVILLE Roberto, KENDRICK Emma, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
4 | LI Matthew, LU Jun. Cobalt in lithium-ion batteries[J]. Science, 2020, 367(6481): 979-980. |
5 | CHOI Hye-bin, Jong-sik RYU, SHIN Woo-jin, et al. The impact of anthropogenic inputs on lithium content in river and tap water[J]. Nature Communications, 2019, 10(1): 5371. |
6 | SATTAR Rabia, ILYAS Sadia, KOUSAR Sidra, et al. Recycling of end-of-life LiNi x Co y Mn z O2 batteries for rare metals recovery[J]. Environmental Engineering Research, 2020, 25(1): 88-95. |
7 | WANG Mengmeng, TAN Quanyin, LIU Lili, et al. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8287-8294. |
8 | FAN Ersha, LI Li, LIN Jiao, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16144-16150. |
9 | BERTUOL Daniel A, MACHADO Caroline M, SILVA Mariana L, et al. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction[J]. Waste Management, 2016, 51: 245-251. |
10 | Martin GRÜTZKE, KRAFT Vadim, WEBER Waldemar, et al. Supercritical carbon dioxide extraction of lithium-ion battery electrolytes[J]. The Journal of Supercritical Fluids, 2014, 94: 216-222. |
11 | FAN Min, CHANG Xin, MENG Qinghai, et al. Progress in the sustainable recycling of spent lithium-ion batteries[J]. SusMat, 2021, 1(2): 241-254. |
12 | LI Yukun, LV Weiguang, HUANG Hanlin, et al. Recycling of spent lithium-ion batteries in view of green chemistry[J]. Green Chemistry, 2021, 23(17): 6139-6171. |
79 | ZANTE Guillaume, MASMOUDI Abderrazak, BARILLON Rémi, et al. Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 269-277. |
80 | LIU Feijie, XUE Zhimin, LAN Xue, et al. CO2 switchable deep eutectic solvents for reversible emulsion phase separation[J]. Chemical Communications, 2021, 57(5): 627-630. |
81 | XU Zhiwen, SHAO Huaishuang, ZHAO Qinxin, et al. Use of microwave-assisted deep eutectic solvents to recycle lithium manganese oxide from Li-ion batteries[J]. JOM, 2021, 73(7): 2104-2110. |
13 | YAO Yonglin, ZHU Meiying, ZHAO Zhuo, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
14 | ZHANG Suojiang, HE Hongyan, ZHOU Qing, et al. Principles and strategies for green process engineering[J]. Green Chemical Engineering, 2022, 3(1): 1-4. |
15 | ZENG Shaojuan, DONG Haifeng, BAI Yinge, et al. New technology of ionic liquid-based NH3/CO2 separation from melamine tail gas[J]. Green Chemical Engineering, 2020, 1(1): 5. |
16 | WANG Jianji. Innovating ionic liquids as repairable electronics for liquid robots[J]. Green Energy & Environment, 2020, 5(2): 122-123. |
17 | CHEN Yu, LIU Chong, GUO Shien, et al. CO2 capture and conversion to value-added products promoted by MXene-based materials[J]. Green Energy & Environment, 2022, 7(3): 394-410. |
18 | ZHANG Tao, DOERT Thomas, WANG Hui, et al. Inorganic synthesis based on reactions of ionic liquids and deep eutectic solvents[J]. Angewandte Chemie International Edition, 2021, 60(41): 22148-22165. |
19 | CHEN Zhiwu, GUI Qinyuan, WANG Yapei. Dynamic chemistry in ionic liquid-based conductor[J]. Green Chemical Engineering, 2021, 2(4): 346-358. |
20 | ABBOTT A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003(1): 70-71. |
21 | YU Dongkun, XUE Zhimin, MU Tiancheng. Eutectics: formation, properties, and applications[J]. Chemical Society Reviews, 2021, 50(15): 8596-8638. |
22 | Adrian SANCHEZ-FERNANDEZ, JACKSON Andrew J, PRÉVOST Sylvain F, et al. Long-range electrostatic colloidal interactions and specific ion effects in deep eutectic solvents[J]. Journal of the American Chemical Society, 2021, 143(35): 14158-14168. |
23 | Justyna PŁOTKA-WASYLKA, DE LA GUARDIA Miguel, ANDRUCH Vasil, et al. Deep eutectic solvents vs ionic liquids: similarities and differences[J]. Microchemical Journal, 2020, 159: 105539. |
24 | ABBOTT Andrew P, CAPPER Glen, DAVIES David L, et al. Ionic liquid analogues formed from hydrated metal salts[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2004, 10(15): 3769-3774. |
25 | FLORINDO Catarina, LIMA Filipa, RIBEIRO Bernardo Dias, et al. Deep eutectic solvents: overcoming 21st century challenges[J]. Current Opinion in Green and Sustainable Chemistry, 2019, 18: 31-36. |
26 | PAIVA Alexandre, CRAVEIRO Rita, AROSO Ivo, et al. Natural deep eutectic solvents - solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1063-1071. |
27 | CHEN Yu, MU Tiancheng. Application of deep eutectic solvents in biomass pretreatment and conversion[J]. Green Energy & Environment, 2019, 4(2): 95-115. |
28 | LIU Qiaoling, ZHAO Xinhui, YU Dongkun, et al. Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin[J]. Green Chemistry, 2019, 21(19): 5291-5297. |
29 | CHENG Qian, XU Weiheng, QIN Shiyi, et al. Full dissolution of the whole lithium sulfide family (Li2S8 to Li2S) in a safe eutectic solvent for rechargeable lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019, 58(17): 5557-5561. |
30 | WANG Hongmin, LI Mengran, GARG Sahil, et al. Cobalt electrochemical recovery from lithium cobalt oxides in deep eutectic choline Chloride+Urea solvents[J]. ChemSusChem, 2021, 14(14): 2972-2983. |
31 | YU Dongkun, XUE Zhimin, MU Tiancheng. Deep eutectic solvents as a green toolbox for synthesis[J]. Cell Reports Physical Science, 2022: 100809. |
32 | WANG Yicong, WANG Shanshan, LIU Leilei. Recovery of natural active molecules using aqueous two-phase systems comprising of ionic liquids/deep eutectic solvents[J]. Green Chemical Engineering, 2022, 3(1): 5-14. |
33 | ZHENG Xiaohong, ZHU Zewen, LIN Xiao, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4(3): 361-370. |
34 | ZENG Xianlai, LI Jinhui, SINGH Narendra. Recycling of spent lithium-ion battery: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(10): 1129-1165. |
35 | PADWAL Chinmayee, PHAM Hong Duc, JADHAV Sagar, et al. Deep eutectic solvents: green approach for cathode recycling of Li-ion batteries[J]. Advanced Energy and Sustainability Research, 2022, 3(1): 2100133. |
36 | MORINA Riccardo, CALLEGARI Daniele, MERLI Daniele, et al. Cathode active material recycling from spent lithium batteries: a green (circular) approach based on deep eutectic solvents[J]. ChemSusChem, 2022, 15(2): e202102080. |
37 | 程明强, 汝娟坚, 华一新, 等. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展 [J]. 化工进展, 2022, 41(6): 3293-3305. |
CHENG Mingqiang, RU juanjian, HUA Yixin, et al. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293-3305. | |
38 | OTHMAN Enas A, VAN DER HAM Aloijsius G J, MIEDEMA Henk, et al. Recovery of metals from spent lithium-ion batteries using ionic liquid[P8888][Oleate[J]. Separation and Purification Technology, 2020, 252: 117435. |
39 | PARMENTIER Dries, VANDER HOOGERSTRAETE Tom, METZ Sybrand J, et al. Selective extraction of metals from chloride solutions with the tetraoctylphosphonium oleate ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5149-5158. |
40 | LIAO Bing, GUO Na, SU Shijun, et al. Efficient separation and high selectivity for cobalt and nickel from manganese solution by a chitosan derivative: competitive behavior and interaction mechanisms[J]. Industrial & Engineering Chemistry Research, 2017, 56(12): 3418-3428. |
41 | KANG Jingu, SENANAYAKE Gamini, SOHN Jeongsoo, et al. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272[J]. Hydrometallurgy, 2010, 100(3/4): 168-171. |
42 | CHEN Xiangping, ZHOU Tao. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media[J]. Waste Management & Research, 2014, 32(11): 1083-1093. |
43 | TAIT Brian K. Cobalt-nickel separation: the extraction of cobalt(Ⅱ) and nickel(Ⅱ) by Cyanex 301, Cyanex 302 and Cyanex 272[J]. Hydrometallurgy, 1993, 32(3): 365-372. |
44 | MAIYOH Geoffrey K, NJOROGE Rachel W, TUEI Vivian C. Effects and mechanisms of kerosene use-related toxicity[J]. Environmental Toxicology and Pharmacology, 2015, 40(1): 57-70. |
45 | NISHIDA Hiroshi, TAKADA Naoko, YOSHIMURA Masaji, et al. Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. highly lipophilic stable anionic agent for solvent-extraction of cations[J]. Bulletin of the Chemical Society of Japan, 1984, 57(9): 2600-2604. |
46 | SHI Chenglong, JING Yan, JIA Yongzhong. Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid[J]. Journal of Molecular Liquids, 2016, 215: 640-646. |
47 | ZHENG Hongshuai, DONG Tao, SHA Yifan, et al. Selective extraction of lithium from spent lithium batteries by functional ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(20): 7022-7029. |
48 | LI Li, GE Jing, WU Feng, et al. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 288-293. |
49 | ZENG Xianlai, LI Jinhui. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries[J]. Journal of Hazardous Materials, 2014, 271: 50-56. |
50 | LI Li, CHEN Renjie, SUN Feng, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J]. Hydrometallurgy, 2011, 108(3/4): 220-225. |
51 | TRAN Mai K, RODRIGUES Marco Tulio F, KATO Keiko, et al. Deep eutectic solvents for cathode recycling of Li-ion batteries[J]. Nature Energy, 2019, 4(4): 339-345. |
52 | LU Qingqiang, CHEN Linlin, LI Xiaowei, et al. Sustainable and convenient recovery of valuable metals from spent Li-ion batteries by a one-pot extraction process[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13851-13861. |
53 | 巩珊珊, 吴彤, 王官格, 等. 基于高效回收废旧锂离子电池正极材料的低共熔溶剂的筛选[J]. 高等学校化学学报, 2021, 42(10): 3151-3159. |
GONG Shanshan, WU Tong, WANG Guange, et al. Screening of deep eutectic solvent based on efficient recovery of spent lithium-ion battery cathode materials[J]. Chemical Journal of Chinese Universities, 2021, 42(10): 3151-3159. | |
54 | ROLDÁN-RUIZ María Jesús, FERRER María Luisa, GUTIÉRREZ María Concepción, et al. Highly efficient p-toluenesulfonic acid-based deep-eutectic solvents for cathode recycling of Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5437-5445. |
55 | TANG Shujie, ZHANG Mei, GUO Min. A novel deep-eutectic solvent with strong coordination ability and low viscosity for efficient extraction of valuable metals from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 975-985. |
56 | CHEN Yu, LU Yanhong, LIU Zhenghui, et al. Efficient dissolution of lithium-ion batteries cathode LiCoO2 by polyethylene glycol-based deep eutectic solvents at mild temperature[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11713-11720. |
57 | Blaise SMITH P, CRESPI Charles. Thiourea toxicity in mouse C3H/10T1/2 cells expressing human flavin-dependent monooxygenase 3[J]. Biochemical Pharmacology, 2002, 63(11): 1941-1948. |
58 | GOLDSMITH E D, HARNLY M H. The comparative toxicity of thiourea to four mutants of drosophila melanogaster[J]. Science, 1946, 103(2682): 649-651. |
59 | CHEN Yu, WANG Yanlong, BAI Yue, et al. Significant improvement in dissolving lithium-ion battery cathodes using novel deep eutectic solvents at low temperature[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(38): 12940-12948. |
60 | WANG Shubin, ZHANG Zuotai, LU Zhouguang, et al. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries[J]. Green Chemistry, 2020, 22(14): 4473-4482. |
61 | PENG Chao, LIU Fupeng, Arif T AJI, et al. Extraction of Li and Co from industrially produced Li-ion battery waste-using the reductive power of waste itself[J]. Waste Management, 2019, 95: 604-611. |
62 | PEETERS Nand, BINNEMANS Koen, Sofía RIAÑO. Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents[J]. Green Chemistry, 2020, 22(13): 4210-4221. |
63 | CHEN Linlin, CHAO Yanhong, LI Xiaowei, et al. Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries[J]. Green Chemistry, 2021, 23(5): 2177-2184. |
64 | WANG Kang, HU Tianyou, SHI Penghui, et al. Efficient recovery of value metals from spent lithium-ion batteries by combining deep eutectic solvents and coextraction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1149-1159. |
65 | 杜沛星, 李宇浩, 饶中浩, 等. 低共熔溶剂回收锂离子电池正极材料的研究[J]. 工程热物理学报, 2022(1): 152-157. |
DU Peixing, LI Yuhao, RAO Zhonghao, et al. Study on recovery of cathode material of lithium ion battery using deep eutectic solvents[J]. Journal of Engineering Thermophysics, 2022(1): 152-157. | |
66 | SCHIAVI Pier Giorgio, ALTIMARI Pietro, BRANCHI Mario, et al. Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent[J]. Chemical Engineering Journal, 2021, 417: 129249. |
67 | VIEIRA Nicole S M, STOLTE Stefan, ARAÚJO João M M, et al. Acute aquatic toxicity and biodegradability of fluorinated ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3733-3741. |
68 | KAPITANOV Illia V, JORDAN Andrew, KARPICHEV Yevgen, et al. Synthesis, self-assembly, bacterial and fungal toxicity, and preliminary biodegradation studies of a series of l-phenylalanine-derived surface-active ionic liquids[J]. Green Chemistry, 2019, 21(7): 1777-1794. |
69 | PERNAK Juliusz, BORUCKA Nina, WALKIEWICZ Filip, et al. Synthesis, toxicity, biodegradability and physicochemical properties of 4-benzyl-4-methylmorpholinium-based ionic liquids[J]. Green Chemistry, 2011, 13(10): 2901-2910. |
70 | CHEN Yu, MU Tiancheng. Revisiting greenness of ionic liquids and deep eutectic solvents[J]. Green Chemical Engineering, 2021, 2(2): 174-186. |
71 | CHEN Yu, HU Xiaohong, CHEN Wenjun, et al. High volatility of superbase-derived eutectic solvents used for CO2 capture[J]. Physical Chemistry Chemical Physics, 2021, 23(3): 2193-2210. |
72 | CHEN Yu, WANG Qian, LIU Zhenghui, et al. Vaporization enthalpy, long-term evaporation and evaporation mechanism of polyethylene glycol-based deep eutectic solvents[J]. New Journal of Chemistry, 2020, 44(22): 9493-9501. |
73 | CHEN Yu, YU Dongkun, LU Yanhong, et al. Volatility of deep eutectic solvent choline chloride: N-methylacetamide at ambient temperature and pressure[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7308-7317. |
74 | CHEN Yu, YU Dongkun, FU Li, et al. The dynamic evaporation process of the deep eutectic solvent LiTf2N: N-methylacetamide at ambient temperature[J]. Physical Chemistry Chemical Physics, 2019, 21(22): 11810-11821. |
75 | CHEN Wenjun, XUE Zhimin, WANG Jinfang, et al. Investigation on the thermal stability of deep eutectic solvents[J]. Acta Physico-Chimica Sinica, 2018, 34(8): 904-911. |
76 | WANG Binshen, QIN Li, MU Tiancheng, et al. Are ionic liquids chemically stable? [J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
77 | CHEN Yu, YU Dongkun, CHEN Wenjun, et al. Water absorption by deep eutectic solvents[J]. Physical Chemistry Chemical Physics, 2019, 21(5): 2601-2610. |
78 | CAO Yuanyuan, CHEN Yu, SUN Xiaofu, et al. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity[J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12252-12262. |
[1] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[6] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[7] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[8] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[9] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[12] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[13] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[14] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
[15] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |