化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 351-365.DOI: 10.16085/j.issn.1000-6613.2022-1474
收稿日期:
2022-08-09
修回日期:
2022-08-24
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
郭荣鑫
作者简介:
李昊(1998—),男,硕士研究生,研究方向为道路结构与材料。E-mial:lihaokust@163.com。
基金资助:
LI Hao(), GUO Rongxin(), YAN Yong
Received:
2022-08-09
Revised:
2022-08-24
Online:
2022-10-20
Published:
2022-11-10
Contact:
GUO Rongxin
摘要:
高模量沥青混合料因其出众的抗车辙性能和抗疲劳性能成为构建重载交通长寿命路面的理想材料,但低温性能差成为制约其应用和发展的最重要因素。近年来,如何改善高模量沥青及其混合料低温性能成为了路面领域的研究热点。本文综述了在胶结料中添加热塑性弹性体、油基改性剂、纳米材料以及在混合料中添加纤维这4种主要技术路径,重点阐述了这4种技术路径的改性材料用量、改性工艺参数与改性效果之间的关联,并对其改性机理进行总结。最后展望了高模量沥青及其混合料在低温性能方面的未来研究重点和发展趋势,即旨在克服高模量沥青混合料应用范围的限制,进而推动高模量沥青混合料在重载长寿命路面中的应用。
中图分类号:
李昊, 郭荣鑫, 晏永. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(S1): 351-365.
LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365.
标准 | 技术指标 | |||||
---|---|---|---|---|---|---|
延度(25℃,5cm/min)/cm | 劲度模量(-12℃)/MPa | 蠕变速率(-12℃) | 破坏应变(-12℃)/% | 延度(25℃,5cm/min)/cm | ||
沥青状态 | 原样 | TFOT | — | PAV | — | |
山西地方标准 | ≥10 | — | — | — | — | |
青海地方标准 | — | ≥15 | — | — | — | |
安徽地方标准 | ≥10 | — | — | — | — | |
辽宁地方标准 | — | — | ≤300 | ≥0.3 | ≥1.0 |
表1 高模量沥青胶结料低温性能技术指标[14-17]
标准 | 技术指标 | |||||
---|---|---|---|---|---|---|
延度(25℃,5cm/min)/cm | 劲度模量(-12℃)/MPa | 蠕变速率(-12℃) | 破坏应变(-12℃)/% | 延度(25℃,5cm/min)/cm | ||
沥青状态 | 原样 | TFOT | — | PAV | — | |
山西地方标准 | ≥10 | — | — | — | — | |
青海地方标准 | — | ≥15 | — | — | — | |
安徽地方标准 | ≥10 | — | — | — | — | |
辽宁地方标准 | — | — | ≤300 | ≥0.3 | ≥1.0 |
标准 | 低温小梁弯曲应变(-10℃)/ | ||
---|---|---|---|
国家标准 | ≥2000 | ||
中国公路学会团标 | ≥2000 | ||
河北地方标准 | ≥2200 | ||
辽宁地方标准 | ≥1900 | ||
山东地方标准 | ≥2000 | ||
黑龙江地方标准 | ≥2800(上面层) | ≥2600(中、下面层) | |
山西地方标准 | ≥2000(1-3,2-3) | ≥2300(2-2) | |
安徽地方标准 | ≥2000(1-3,2-3,1-4,2-4) | ≥2300(1-2,2-2,3-2) | ≥2600(1-1,2-1) |
青海地方标准 | ≥2500(冬冷区) | ≥2800(冬寒区) | ≥3000(冬严寒区) |
表2 高模量沥青混合料低温性能技术指标[9-17]
标准 | 低温小梁弯曲应变(-10℃)/ | ||
---|---|---|---|
国家标准 | ≥2000 | ||
中国公路学会团标 | ≥2000 | ||
河北地方标准 | ≥2200 | ||
辽宁地方标准 | ≥1900 | ||
山东地方标准 | ≥2000 | ||
黑龙江地方标准 | ≥2800(上面层) | ≥2600(中、下面层) | |
山西地方标准 | ≥2000(1-3,2-3) | ≥2300(2-2) | |
安徽地方标准 | ≥2000(1-3,2-3,1-4,2-4) | ≥2300(1-2,2-2,3-2) | ≥2600(1-1,2-1) |
青海地方标准 | ≥2500(冬冷区) | ≥2800(冬寒区) | ≥3000(冬严寒区) |
改性剂名称 | 高模量沥青种类 | 掺量 | 掺加工艺 | 参考 文献 |
---|---|---|---|---|
SBS | 50#沥青 | 5%~15% | 180℃下剪切20min | [ |
高模量剂 | 5%、6% | — | [ | |
岩沥青 | 4%~8% | 以4000~5000r/min的速率在180℃下剪切60min | [ | |
2%、4% | 在170℃下以1000r/min剪切10min后调速至5000r/min剪切45min | [ | ||
2% | 在175℃下以2500r/min搅拌30min后再以5000r/min剪切30min | [ | ||
4% | 干法掺加,将BRA直接掺加到SBS改性沥青混合料中 | [ | ||
SBR | 高模量剂 | 2%~4% | 升温至170℃搅拌20min后以3000r/min的速率剪切30min | [ |
4% | — | [ | ||
岩沥青 | 2%~8% | 在160~170℃,1000r/min下缓慢加入SBR,添加完成后调整转速至3000r/min剪切20min | [ | |
2%~8% | 165℃以3000r/min剪切30min | [ | ||
2%~8% | 165℃将SBR与BRA加入,以3000r/min的速率剪切30min | [ | ||
3%、5% | 140℃下以4000r/min的速率剪切25~30min | [ | ||
废胶粉 | 高模量剂 | 5%~15% | 添加胶粉后,将沥青置于140℃下的烘箱中发育,完成后在180~185℃下以5000r/min的速率剪切45min | [ |
4%~12% | 添加胶粉后在150℃下搅拌30min,加热至170~180℃以3000~4000r/min的速率剪切30min | [ | ||
岩沥青 | 14%、18% | 180℃下搅拌30min后加入稳定剂,以5000r/min的速率剪切30min | [ | |
10%~18% | 在170℃下将胶粉与岩沥青同时加入,并在175℃下以2500r/min的速率剪切30min | [ |
表3 热塑性性弹性体改性剂掺量及掺加工艺
改性剂名称 | 高模量沥青种类 | 掺量 | 掺加工艺 | 参考 文献 |
---|---|---|---|---|
SBS | 50#沥青 | 5%~15% | 180℃下剪切20min | [ |
高模量剂 | 5%、6% | — | [ | |
岩沥青 | 4%~8% | 以4000~5000r/min的速率在180℃下剪切60min | [ | |
2%、4% | 在170℃下以1000r/min剪切10min后调速至5000r/min剪切45min | [ | ||
2% | 在175℃下以2500r/min搅拌30min后再以5000r/min剪切30min | [ | ||
4% | 干法掺加,将BRA直接掺加到SBS改性沥青混合料中 | [ | ||
SBR | 高模量剂 | 2%~4% | 升温至170℃搅拌20min后以3000r/min的速率剪切30min | [ |
4% | — | [ | ||
岩沥青 | 2%~8% | 在160~170℃,1000r/min下缓慢加入SBR,添加完成后调整转速至3000r/min剪切20min | [ | |
2%~8% | 165℃以3000r/min剪切30min | [ | ||
2%~8% | 165℃将SBR与BRA加入,以3000r/min的速率剪切30min | [ | ||
3%、5% | 140℃下以4000r/min的速率剪切25~30min | [ | ||
废胶粉 | 高模量剂 | 5%~15% | 添加胶粉后,将沥青置于140℃下的烘箱中发育,完成后在180~185℃下以5000r/min的速率剪切45min | [ |
4%~12% | 添加胶粉后在150℃下搅拌30min,加热至170~180℃以3000~4000r/min的速率剪切30min | [ | ||
岩沥青 | 14%、18% | 180℃下搅拌30min后加入稳定剂,以5000r/min的速率剪切30min | [ | |
10%~18% | 在170℃下将胶粉与岩沥青同时加入,并在175℃下以2500r/min的速率剪切30min | [ |
指标 | SBR种类 | 提升的文献 | 降低的文献 |
---|---|---|---|
针入度 | 胶乳 | [ | [ |
相位角 | 粉末 | [ | [ |
相位角 | 胶乳 | [ | [ |
动稳定度 | 胶乳 | [ | [ |
抗水损害 | 粉末 | [ | [ |
表4 SBR改善高模量沥青及其混合料性能指标争议梳理
指标 | SBR种类 | 提升的文献 | 降低的文献 |
---|---|---|---|
针入度 | 胶乳 | [ | [ |
相位角 | 粉末 | [ | [ |
相位角 | 胶乳 | [ | [ |
动稳定度 | 胶乳 | [ | [ |
抗水损害 | 粉末 | [ | [ |
高模量沥青 种类 | 掺量 | 掺加工艺 | 参考文献 |
---|---|---|---|
岩沥青 | 3%~9% | 搅拌15min后在135℃下以3000r/min的速度剪切20min | [ |
岩沥青 | 2%~6% | 160℃加入生物油以1500r/min的速率搅拌10min后加入岩沥青,搅拌30min后再以3000r/min的速率剪切30min | [ |
岩沥青 | — | 160℃时加入岩沥青以1500r/min的速率搅拌均匀后,以3000r/min的速率剪切60min,最后降温至140℃,加入生物沥青后低速搅拌30min | [ |
50#沥青 | 0~30% | 105℃时掺入生物沥青以1500r/min的速率搅拌均匀 | [ |
表5 油基改性剂掺量及掺加工艺
高模量沥青 种类 | 掺量 | 掺加工艺 | 参考文献 |
---|---|---|---|
岩沥青 | 3%~9% | 搅拌15min后在135℃下以3000r/min的速度剪切20min | [ |
岩沥青 | 2%~6% | 160℃加入生物油以1500r/min的速率搅拌10min后加入岩沥青,搅拌30min后再以3000r/min的速率剪切30min | [ |
岩沥青 | — | 160℃时加入岩沥青以1500r/min的速率搅拌均匀后,以3000r/min的速率剪切60min,最后降温至140℃,加入生物沥青后低速搅拌30min | [ |
50#沥青 | 0~30% | 105℃时掺入生物沥青以1500r/min的速率搅拌均匀 | [ |
纳米材料种类 | 掺量 | 掺加工艺 | 参考文献 |
---|---|---|---|
纳米二氧化硅 | 1%~3% | 170℃将岩沥青与纳米二氧化硅加入沥青中手动搅拌20min后以5000r/min的速率剪切30min | [ |
纳米碳酸钙 | 5%、10% | 140℃下以4000r/min的速率剪切25~30min | [ |
纳米二氧化硅 | 1% | 170℃将岩沥青与纳米二氧化硅加入沥青中手动搅拌20min后以5000r/min的速率剪切30min后保温发育2h | [ |
硅藻土 | 7%、9% | 150℃时加入岩沥青和硅藻土,升温至175℃保温1h后以3000r/min的速率剪切30min | [ |
纳米气凝胶 | 1%~3% | 150℃时加入岩沥青,升温至160℃时保温发育1h后加入纳米气凝胶并搅拌15min,最后以5000r/min的速率剪切40~60min | [ |
纳米聚合物 | 10%~30%(纳米材料与岩沥青) | 135℃时加入复合改性剂,升温至175℃以3000r/min的速率剪切1h | [ |
表6 部分纳米材料改性剂掺量及掺加工艺
纳米材料种类 | 掺量 | 掺加工艺 | 参考文献 |
---|---|---|---|
纳米二氧化硅 | 1%~3% | 170℃将岩沥青与纳米二氧化硅加入沥青中手动搅拌20min后以5000r/min的速率剪切30min | [ |
纳米碳酸钙 | 5%、10% | 140℃下以4000r/min的速率剪切25~30min | [ |
纳米二氧化硅 | 1% | 170℃将岩沥青与纳米二氧化硅加入沥青中手动搅拌20min后以5000r/min的速率剪切30min后保温发育2h | [ |
硅藻土 | 7%、9% | 150℃时加入岩沥青和硅藻土,升温至175℃保温1h后以3000r/min的速率剪切30min | [ |
纳米气凝胶 | 1%~3% | 150℃时加入岩沥青,升温至160℃时保温发育1h后加入纳米气凝胶并搅拌15min,最后以5000r/min的速率剪切40~60min | [ |
纳米聚合物 | 10%~30%(纳米材料与岩沥青) | 135℃时加入复合改性剂,升温至175℃以3000r/min的速率剪切1h | [ |
纤维种类 | 掺量 | 掺加工艺 | 参考文献 |
---|---|---|---|
聚酯纤维 | 0.3% | 干拌 | [ |
丙烯酸纤维 | 0.3% | 干拌 | [ |
玄武岩纤维 | 0.3% | 干拌 | [ |
芳纶纤维 | 0.05% | 干拌 | [ |
复合纤维 | 4%~10%(沥青质量),0.35% | 湿拌制备纤维改性高模量沥青及干拌 | [ |
表7 纤维掺量及掺加工艺
纤维种类 | 掺量 | 掺加工艺 | 参考文献 |
---|---|---|---|
聚酯纤维 | 0.3% | 干拌 | [ |
丙烯酸纤维 | 0.3% | 干拌 | [ |
玄武岩纤维 | 0.3% | 干拌 | [ |
芳纶纤维 | 0.05% | 干拌 | [ |
复合纤维 | 4%~10%(沥青质量),0.35% | 湿拌制备纤维改性高模量沥青及干拌 | [ |
1 | 王林, 韦金城, 张晓萌, 等. “四个一体化”破解长寿命沥青路面技术瓶颈[J]. 科学通报, 2020, 65(30): 3238-3246. |
WANG Lin, WEI Jincheng, ZHANG Xiaomeng, et al. “Four integrations” to solve the technical bottleneck of long-life asphalt pavement[J]. Chinese Science Bulletin, 2020, 65(30): 3238-3246. | |
2 | CHEN Yu, WANG Hainian, XU Shibing, et al. High modulus asphalt concrete: a state-of-the-art review[J]. Construction and Building Materials, 2020, 237: 117653. |
3 | CORTE J F. Development and uses of hard grade asphalt and of high modulus asphalt mixes in France, Perpetual Bituminous Pavements, Transportation Research Circular 2001, pp. 12-31 |
4 | 韩冰, 舒诚, 陈杰, 等. 高模量沥青结合料研究进展[J]. 筑路机械与施工机械化, 2019, 36(7): 27-34. |
HAN Bing, SHU Cheng, CHEN Jie, et al. Progress of research on high modulus asphalt binder[J]. Road Machinery & Construction Mechanization, 2019, 36(7): 27-34. | |
5 | JUDYCKI Jozef, JASKULA Piotr, DOLZYCKI Bohdan, et al. Investigation of low-temperature cracking in newly constructed high-modulus asphalt concrete base course of a motorway pavement[J]. Road Materials and Pavement Design, 2015, 16(S1): 362-388. |
6 | Dawid RYS, JUDYCKI Jozef, PSZCZOLA Marek, et al. Comparison of low-temperature cracks intensity on pavements with high modulus asphalt concrete and conventional asphalt concrete bases[J]. Construction and Building Materials, 2017, 147: 478-487. |
7 | 夏全平, 高江平, 罗浩原, 等. 用于高模量沥青砼的复合改性硬质沥青低温性能[J]. 吉林大学学报(工学版), 2022, 52(3): 541-549. |
XIA Quanping, GAO Jiangping, LUO Haoyuan, et al. Low-temperature performance of composite modified hard asphalt used in high modulus asphalt concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3): 541-549. | |
8 | 王朝辉, 舒诚, 韩冰, 等. 高模量沥青混凝土研究进展[J]. 长安大学学报(自然科学版), 2020, 40(1): 1-15. |
WANG Chaohui, SHU Cheng, HAN Bing, et al. Research progress of high modulus asphalt concrete[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(1): 1-15. | |
9 | 中华人民共和国交通部. 公路沥青路面施工技术规范: [S]. 北京: 人民交通出版社, 2005. |
Ministry of Transport of the People's Republic of China. Technical specifications for construction of highway asphalt pavements: [S]. Beijing: China Communications Press, 2005. | |
10 | 中国公路学会. 公路高模量沥青路面施工技术指南: T/ [S]. 北京: 人民交通出版社, 2018. |
China Highway and Transportation Society. Technical guideline for construction of high modulus asphalt pavement mixture: T/ [S]. Beijing: China Communications Press, 2018. | |
11 | 山东省住房和城乡建设厅. 城镇道路高模量沥青混合料设计与施工技术规范: [S]. |
Shandong Provincial Department of Housing and Urban-Rural Development. Technical code for design and construction of high modulus asphalt mixture in urban road: [S]. | |
12 | 河北省质量技术监督局. 公路高模量沥青路面施工技术指南: [S]. |
Hebei Provincial Administration of Qualityand Technical Supervision. Technical guideline for construction of high modulus asphalt pavement mixture: [S]. | |
13 | 黑龙江省市场监督管理局. 高模量沥青混合料路面施工技术规范: [S]. 北京: 中国建筑工业出版社, 2020. |
Administration for Market Regulation of Heilongiiang Province. Technical specification for high modulus asphalt pavement construction: [S]. Beijing: China architecture publishing, 2020. | |
14 | 山西省市场监督管理局. 高模量抗疲劳沥青混合料设计与施工技术规范: [S]. |
Administration for Market Regulation of Shanxi Province. Technical code for design and construction of high modulus anti fatigue asphalt mixture: [S]. | |
15 | 辽宁省质量技术监督局. 高模量沥青混合料施工技术规范: [S]. 北京: 人民交通出版社, 2009. |
Hebei Provincial Administration of Qualityand Technical Supervision. Determination of kalium, sodium andα-nitrogen in root of sugarbeet: [S]. Beijing: China communications publishing, 2009. | |
16 | 安徽省市场监督管理局. 高疲劳性能高模量沥青混合料设计与施工技术规范: [S]. |
Administration for Market Regulation of Anhui Province. Technical specification for the design and construction ofasphalt mixtures with high fatigue life and high modulus: [S]. | |
17 | 青海省市场监督管理局. 高寒高海拔地区高模量天然沥青混合料技术规程: [S]. |
Administration for Market Regulation of Qinghai Province. Technical specification for high modulus natural asphalt mixture in cold and high altitude areas: [S]. | |
18 | ZHANG Enhao, SHAN Liyan, QI Xiaofei, et al. Investigating the relationship between chemical composition and mechanical properties of asphalt binders using atomic force microscopy (AFM)[J]. Construction and Building Materials, 2022, 343: 128001. |
19 | XU Yongli, ZHANG Enhao, SHAN Liyan. Effect of SARA on Rheological properties of asphalt binders[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 04019086. 1-04019086. 7. |
20 | 马晓燕, 陈华鑫, 张星宇, 等. SBS改性沥青低温流变性与原材料性能相关性研究[J]. 材料导报, 2018, 32(22): 3885-3890. |
MA Xiaoyan, CHEN Huaxin, ZHANG Xinyu, et al. An analysis over the correlation between low temperature rheological properties of SBS-modified asphalt and raw materials’performance parameters[J]. Materials, Review, 2018, 32(22): 3885-3890. | |
21 | 张洪刚, 谭华, 刘文昌, 等. 基质沥青化学组分对橡胶沥青性能影响的灰关联分析[J]. 公路, 2021, 66(4): 274-281. |
ZHANG Honggang, TAN Hua, LIU Wenchang, et al. Grey relational analysis on asphalt component and rubberized asphalt performance[J]. Highway, 2021, 66(4): 274-281. | |
83 | IZAKS Rolands, RATHORE Mukul, HARITONOVS Viktors, et al. Performance properties of high modulus asphalt concrete containing high reclaimed asphalt content and polymer modified binder[J]. International Journal of Pavement Engineering, 2022, 23(7): 2255-2264. |
22 | 卢桂林, 许新权, 唐志赟, 等. 高模量改性剂的作用机理及应用研究[J]. 建筑材料学报, 2021, 24(2): 355-361. |
LU Guilin, XU Xinquan, TANG Zhiyun, et al. Mechanism andapplication of high modulus agent[J]. Journal of Building Materials, 2021, 24(2): 355-361. | |
23 | XU Xinquan, LU Guilin, YANG Jun, et al. Mechanism and rheological properties of high-modulus asphalt[J]. Advances in Materials Science and Engineering, 2020, 2020: 8795429. |
24 | 储一帆, 薛永兵, 李韬, 等. 基于专利申请分析改性石油沥青路用发展态势[J]. 化工进展, 2021, 40(S2): 232-240. |
CHU Yifan, XUE Yongbing, LI Tao, et al. Analysis of development situation of modified petroleum asphalt road based on patent application[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 232-240. | |
25 | Songtao LYU, FAN Xiyan, YAO Hui, et al. Analysis of performance and mechanism of Buton rock asphalt modified asphalt[J]. Journal of Applied Polymer Science, 2019, 136: 46903. |
26 | 肖庆一, 任希鹏, 李明扬, 等. 高模量沥青结合料流变特性[J]. 公路, 2022, 67(6): 20-28. |
XIAO Qingyi, REN Xipeng, LI Mingyang, et al. Rheological properties of high modulus asphalt binder[J]. Highway, 2022, 67(6): 20-28. | |
27 | 高润杰. 基于流变特性及开裂行为的高模量沥青性能研究[D]. 西安: 长安大学, 2021. |
GAO Runjie. Research on performance of high modulus asphalt based on rheological properties and cracking behavior[D]. Xi’an: Chang’an University, 2021. | |
28 | 王瑞林, 袁光权. 高模量沥青的研发及其性能提升[J]. 材料科学与工程学报, 2022, 40(2): 255-260, 299. |
WANG Ruilin, YUAN Guangquan. Development and performance improvement of high modulus asphalt[J]. Journal of Materials Science and Engineering, 2022, 40(2): 255-260, 299. | |
29 | CAI Liangcai, SHI Xingang, XUE Jing. Laboratory evaluation of composed modified asphalt binder and mixture containing nano-silica/rock asphalt/SBS[J]. Construction and Building Materials, 2018, 172: 204-211. |
30 | 黄刚, 贺俊玺, 张霞, 等. 岩沥青与SBS复合改性高黏沥青的配比研究[J]. 重庆大学学报, 2021, 44(3): 31-44. |
HUANG Gang, HE Junxi, ZHANG Xia, et al. Study on the ratio of rock asphalt and SBS composite modified high viscosity asphalt[J]. Journal of Chongqing University, 2021, 44(3): 31-44. | |
31 | 陶子政. 北美岩沥青/SBS复合改性沥青应用技术研究[D]. 广州: 华南理工大学, 2015. |
TAO Zizheng. Research on application technology of Gilsonite/SBS composite modified asphalt[D]. Guangzhou: South China University of Technology, 2015. | |
32 | 麦裕灿. 欧洲岩沥青及其复合改性沥青性能研究[D]. 广州: 华南理工大学, 2021. |
Yucan MAI. Research on properties of asphalts modified by European rock asphalt and its composite[D]. Guangzhou: South China University of Technology, 2021. | |
33 | 王淋, 郭乃胜, 温彦凯, 等. 几种改性沥青疲劳破坏评价指标及性能研究[J]. 土木工程学报, 2020, 53(1): 118-128. |
WANG Lin, GUO Naisheng, WEN Yankai, et al. Study on fatigue damage evaluation indexes and properties of several improved asphalts[J]. China Civil Engineering Journal, 2020, 53(1): 118-128. | |
34 | 杜少文. 岩沥青SBS复合改性沥青混合料的性能与机理[J]. 建筑材料学报, 2012, 15(6): 871-874. |
DU Shaowen. Performance and mechanism of BRA-SBS polymer composite modified asphalt mixture[J]. Journal of Building Materials, 2012, 15(6): 871-874. | |
35 | 张弼强. 高模量复合改性沥青混合料改性机理及路用性能研究[D]. 沈阳: 沈阳建筑大学, 2020. |
ZHANG Biqiang. Study on modification mechanism and road performance of high modulus composite modified asphalt mixture[D]. Shenyang: Shenyang Jianzhu University, 2020. | |
36 | 高语. 季冻区高模量剂——SBR复合改性沥青混合料耐久性研究[D]. 兰州: 兰州交通大学, 2020. |
GAO Yu. Study on durability of high modulus agent—SBR composite modified asphalt mixture in seasonally freezing area[D]. Lanzhou: Lanzhou Jiatong University, 2020. | |
37 | DENG Xiangming, HUANG Hui, WANG Bin, et al. Modification mechanism of asphalt modified with rock asphalt and styrene-butadiene rubber (SBR)[J]. Advances in Civil Engineering, 2021, 2021: 5533441. |
38 | FAN Xiyan, LU Weiwei, Songtao LYU, et al. Improvement of low-temperature performance of Buton rock asphalt composite modified asphalt by adding styrene-butadiene rubber[J]. Materials (Basel, Switzerland), 2019, 12(15): 2358. |
39 | QU Fangting, Songtao LYU, GAO Junfeng, et al. Performance and mechanism of asphalt modified by Buton-rock asphalt and different types of styrene-butadiene-rubber[J]. Applied Sciences, 2020, 10(9): 3077. |
40 | Songtao LYU, WANG Shuangshuang, GUO Tong, et al. Laboratory evaluation on performance of compound-modified asphalt for rock asphalt/styrene—butadiene rubber (SBR) and rock asphalt/nano-Ca improvement of low-temperature performance of buton rock asphalt composite modified asphalt by adding styrene-butadiene rubber CO3 [J]. Applied sciences, 2018, 8(6): 1009 |
41 | 贺芳伟. BRA复合改性沥青低温特性及其混合料路用性能[D]. 长沙: 长沙理工大学, 2018. |
HE Fangwei. Low temperature characteristics of BRA composite modified asphalt and its pavement performance[D]. Changsha: Changsha University of Science & Technology, 2018. | |
42 | 张芳超. 布敦岩沥青与SBR复合改性沥青混合料性能研究[D]. 长沙: 长沙理工大学, 2017. |
ZHANG Fangchao. Research on the performance of asphalt mixture modified by Buton rock asphalt composite with SBR[D]. Changsha: Changsha University of Science & Technology, 2017. | |
43 | 郭乃胜, 俞春晖, 王淋, 等. PR. M/胶粉复合改性沥青流变及微观特性研究[J]. 材料导报, 2021, 35(10): 10080-10087. |
GUO Naisheng, YU Chunhui, WANG Lin, et al. Rheological and microscopic properties of PR. M/crumb rubber composite modified asphalt[J]. Materials Reports, 2021, 35(10): 10080-10087. | |
44 | 吴朝阳, 任仲山. 橡胶粉掺量对高模量沥青及其混合料性能的影响[J]. 武汉大学学报(工学版), 2016, 49(3): 411-416. |
WU Zhaoyang, REN Zhongshan. Influence of rubber powder content on characteristics of high modulus asphalt and its mixture[J]. Engineering Journal of Wuhan University, 2016, 49(3): 411-416. | |
45 | WEN Yankai, GUO Naisheng, WANG Lin, et al. Rheological properties and microscopic mechanism of rock asphalt composite modified asphalts[J]. Construction and Building Materials, 2021, 281: 122543. |
46 | 汪尧. 阿尔巴尼亚岩沥青/橡胶粉复合改性沥青及其混合料性能研究[D]. 南宁: 广西大学, 2021. |
WANG Yao. Study on performance of ara-CR modified asphalt and asphalt mixture[D]. Nanning: Guangxi University, 2021. | |
47 | 乔阳. 布敦岩沥青与40目橡胶粉复合改性沥青及其混合料的路用性能研究[D]. 昆明: 昆明理工大学, 2019. |
QIAO Yang. Study on road performance of budun rock asphalt and 40 mesh rubber powder composite modified asphalt and its mixture[D]. Kunming: Kunming University of Science and Technology, 2019. | |
48 | 黄卫东, 莫定成, 吕泉, 等. 基于汉堡车辙试验的TB复合改性沥青混合料高温性能评价[J]. 长安大学学报(自然科学版), 2020, 40(6): 12-21. |
HUANG Weidong, MO Dingcheng, Quan LYU, et al. High temperature performance evaluation of TB composite modified asphalt mixture based on Hamburg wheel tracking test[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(6): 12-21. | |
49 | 单丽岩, 张恩浩, 刘爽, 等. 基于原子力显微镜的沥青微观损伤机理分析[J]. 中国公路学报, 2020, 33(10): 171-177. |
SHAN Liyan, ZHANG Enhao, LIU Shuang, et al. Analysis of microscopic damage mechanism of asphalt binder through atomic force microscopy(AFM)[J]. China Journal of Highway and Transport, 2020, 33(10): 171-177. | |
50 | LIANG Bo, SHI Kai, NIU Yanfang, et al. Probing the modification mechanism of and customized processing design for SBS-modified asphalts mediated by potentiometric titration[J]. Construction and Building Materials, 2020, 234: 117385. |
51 | YUAN Dongdong, XING Chengwei, JIANG Wei, et al. Viscoelastic behavior and phase structure of high-content SBS-modified asphalt[J]. Polymers, 2022, 14: 2476. |
52 | WANG Yanlei YI Hongyu, LIANG Pengfei, et al. Investigation on preparation method of SBS-modified asphalt based on MSCR, LAS, and fluorescence microscopy[J]. Applied sciences, 2022, 12: 7304. |
53 | MA Qingwei, GUO Zhongyin, GUO Ping, et al. Research on the viscosity-temperature properties and thermal stability of stabilized rubber powder modified asphalt[J]. Sustainability, 2021, 13(24): 13536. |
54 | 马涛, 陈葱琳, 张阳, 等. 胶粉应用于沥青改性技术的发展综述[J]. 中国公路学报, 2021, 34(10): 1-16. |
MA Tao, CHEN Conglin, ZHANG Yang, et al. Development of using crumb rubber in asphalt modification: a review[J]. China Journal of Highway and Transport, 2021, 34(10): 1-16. | |
55 | Songtao LYU, YUAN Jiang, PENG Xinghai, et al. Performance and optimization of bio-oil/Buton rock asphalt composite modified asphalt[J]. Construction and Building Materials, 2020, 264: 120235. |
56 | YAN Kezhen, LIU Wenyao, YOU Lingyun, et al. Evaluation of waste cooling oil and European Rock Asphalt modified asphalt with laboratory tests and economic cost comparison[J]. Journal of Cleaner Production, 2021, 310: 127364. |
57 | YAN Kezhen, ZHANG Man, YOU Lingyun, et al. Performance and optimization of castor beans-based bio-asphalt and European rock-asphalt modified asphalt binder[J]. Construction and Building Materials, 2020, 240: 117951. |
58 | 曾梦澜, 夏颖林, 祝文强, 等. 生物沥青、岩沥青及复合改性沥青常规性能与流变性能的相关性[J]. 湖南大学学报(自然科学版), 2019, 46(11): 131-136. |
ZENG Menglan, XIA Yinglin, ZHU Wenqiang, et al. Correlation between conventional performance and rheological performance of bio-asphalt, rock asphalt and composite modified asphalt[J]. Journal of Hunan University (Natural Sciences), 2019, 46(11): 131-136. | |
59 | 祝文强, 曾梦澜, 吴国荣, 等. 生物沥青-岩沥青复合改性沥青混合料的使用性能[J]. 公路交通科技, 2020, 37(9): 1-7. |
ZHU Wenqiang, ZENG Menglan, WU Guorong, et al. Performance of bio-asphalt and rock-asphalt co-modified asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2020, 37(9): 1-7. | |
60 | Songtao LYU, LIU Jing, PENG Xinghai, et al. Laboratory experiments of various bio-asphalt on rheological and microscopic properties[J]. Journal of Cleaner Production, 2021, 320: 128770. |
61 | 张曼. 欧洲岩沥青与废食用油复合改性沥青及其混合料性能研究[D]. 长沙: 湖南大学, 2020. |
ZHANG Man. Study on the performance of European rock asphalt and waste cooking oil composite modified asphalt binder and mixture[D]. Changsha: Hunan University, 2020. | |
62 | MA Jianmin, SUN Guoqiang, SUN Daquan, et al. Chemo-rheological characterization of the effect of Iran rock asphalt on the performance of waste bio-oil modified asphalts[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(10): 1324-1338. |
63 | LAI Shuorong, LI Shujun, XU Yongli, et al. Preparation, Characterization, and performance evaluation of petroleum asphalt modified with bio-asphalt containing furfural residue and waste cooking oil[J]. Polymers, 2022, (14): 1683. |
64 | SHI Xingang, CAI Liangcai, XU Wei, et al. Effects of nano-silica and rock asphalt on rheological properties of modified bitumen[J]. Construction and Building Materials, 2018, 161: 705-714. |
65 | HUANG Wentong, WANG Duanyi, HE Peiyong, et al. Rheological characteristics evaluation of bitumen composites containing rock asphalt and diatomite[J]. Applied Sciences, 2019, 9(5): 1023. |
66 | 史珂. 纳米气凝胶岩沥青复合改性沥青的制备及老化性能研究[D]. 长沙: 长沙理工大学, 2019. |
SHI Ke. Study on preparation and aging properties of the composite modified asphalt of nano aerogel rock asphalt[D]. Changsha: Changsha University of Science & Technology, 2019. | |
67 | MI Shizhong, LI Yongxiang, ZHANG Haiwei. Preparation and characterization of high modulus agent modified asphalt and its high modulus mixture[J]. Advances in Materials Science and Engineering, 2022, 2022: 2374241. |
68 | LI Zhenxia, GUO Tengteng, CHEN Yukun, et al. The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt[J]. Nanotechnology Reviews, 2021, 10(1): 1253-1265. |
69 | WANG Xiushan, QIU Yangjie, XUE Shengya, et al. Study on durability of high-modulus asphalt mixture based on TLA and fibre composite modification technology[J]. International Journal of Pavement Engineering, 2018, 19(10): 930-936. |
70 | MORENO-NAVARRO F, SOL-SÁNCHEZ M, TOMÁS-FORTÚN E, et al. High-modulus asphalt mixtures modified with acrylic fibers for their use in pavements under severe climate conditions[J]. Journal of Cold Regions Engineering, 2016, 30(4): 04016003. |
71 | 吕阳. 掺玄武岩纤维的高模量沥青混合料性能试验研究[D]. 扬州: 扬州大学, 2016. |
Yang LYU. Experimental study on performance of high modulus asphalt mixture with basalt fiber[D]. Yangzhou: Yangzhou University, 2016. | |
72 | Damian WIŚNIEWSKI, Mieczysław SŁOWIK, KEMPA Jan, et al. Assessment of impact of aramid fibre addition on the mechanical properties of selected asphalt mixtures[J]. Materials, 2020, 13(15): 3302. |
73 | 马立杰, 杨春风. 掺加纤维对高模量沥青混合料柔韧性及路用性能影响研究[J]. 功能材料, 2019, 50(1): 1164-1173, 1177. |
MA Lijie, YANG Chunfeng. Study on the influence of fiber on flexibility and road performance of high modulus asphalt mixture[J]. Journal of Functional Materials, 2019, 50(1): 1164-1173, 1177. | |
74 | SHEN Aiqin, WU Hansong, YANG Xiaolong, et al. Effect of different fibers on pavement performance of asphalt mixture containing steel slag[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020333 |
75 | WANG Shuai, MALLICK Rajib B, RAHBAR Nima. Toughening mechanisms in polypropylene fiber-reinforced asphalt mastic at low temperature[J]. Construction and Building Materials, 2020, 248: 118690. |
76 | LIU Li, HUANG You, LIU Zhaohui, Laboratory evaluation of asphalt binder modified with crumb rubber and basalt fiber[J]. Advances in Civil Engineering. 2020, 2020(10): 8841378 |
77 | WANG Chaohui, ZHOU Xiaolei, YUAN Huazhi, et al. Preparation and performance of UHMWP modified asphalt and its high modulus mixture[J]. Construction and Building Materials, 2021, 294: 123629. |
78 | ZHANG Xiaorui, HAN Chao, YANG Jun, et al. Evaluating the rheological properties of high-modulus asphalt binders modified with rubber polymer composite modifier[J]. Materials, 2021, 14(24): 7727. |
79 | BAGHAEE MOGHADDAM Taher, BAAJ Hassan. The use of compressible packing model and modified asphalt binders in high-modulus asphalt mix design[J]. Road Materials and Pavement Design, 2020, 21(4): 1061-1077. |
80 | MA Tao, WANG Hao, HUANG Xiaoming, et al. Laboratory performance characteristics of high modulus asphalt mixture with high-content RAP[J]. Construction and Building Materials, 2015, 101: 975-982. |
81 | ZHU Junqing, MA Tao, FAN Jianwei, et al. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement[J]. Journal of Cleaner Production, 2020, 263: 121447. |
82 | MA Tao, DING Xunhao, ZHANG Deyu, et al. Experimental study of recycled asphalt concrete modified by high-modulus agent[J]. Construction and Building Materials, 2016, 128: 128-135. |
[1] | 张争奇, 罗要飞, 赵富强. 储盐类融雪抑冰材料对沥青混合料性能影响研究进展[J]. 化工进展, 2018, 37(06): 2282-2294. |
[2] | 梁佳男, 赵耀华, 全贞花, 叶欣, 迟远英. 基于微热管阵列锂电池的低温加热性能[J]. 化工进展, 2017, 36(11): 4030-4036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |