1 |
ZHANG T, ZHANG W C, YANG R Z, et al. CO2 capture and storage monitoring based on remote sensing techniques: a review[J]. Journal of Cleaner Production, 2021, 281: 124409.
|
2 |
MODAK A, JANA S. Advancement in porous adsorbents for post-combustion CO2 capture[J]. Microporous and Mesoporous Materials, 2019, 276: 107-132.
|
3 |
OMODOLOR I S, OTOR H O, ANDONEGUI J A, et al. Dual-function materials for CO2 capture and conversion: a review[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17612-17631.
|
4 |
CHAKRABORTTY S, NAYAK J, RUJ B, et al. Photocatalytic conversion of CO2 to methanol using membrane-integrated green approach: a review on capture, conversion and purification[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103935.
|
5 |
WILBERFORCE T, OLABI A G, SAYED E T, et al. Progress in carbon capture technologies[J]. Science of the Total Environment, 2021, 761: 143203.
|
6 |
OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 77-109.
|
7 |
RUSSO F, GALIANO F, IULIANELLI A, et al. Biopolymers for sustainable membranes in CO2 separation: a review[J]. Fuel Processing Technology, 2021, 213: 106643.
|
8 |
JIAO C L, LI Z D, LI X X, et al. Improved CO2/N2 separation performance of Pebax composite membrane containing polyethyleneimine functionalized ZIF-8[J]. Separation and Purification Technology, 2021, 259: 118190.
|
9 |
SHARMA A, JINDAL J, MITTAL A, et al. Carbon materials as CO2 adsorbents: a review[J]. Environmental Chemistry Letters, 2021, 19(2): 875-910.
|
10 |
CHENG Y D, ZHAI L Z, YING Y P, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7(9): 4549-4560.
|
11 |
APRILIYANTO Y B, DARMAWAN N, FAGINAS-LAGO N, et al. Two-dimensional diamine-linked covalent organic frameworks for CO2/N2 capture and separation: theoretical modeling and simulations[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(44): 25918-25929.
|
12 |
SINGH G, LEE J, KARAKOTI A, et al. Emerging trends in porous materials for CO2 capture and conversion[J]. Chemical Society Reviews, 2020, 49(13): 4360-4404.
|
13 |
HA D, LEE H, HAN J S, et al. Super-activated CNB for CO2 capture: the development of the nitrogen containing porous carbon by chlorination and post KOH-activation[J]. Journal of Alloys and Compounds, 2021, 861: 158358.
|
14 |
SUIB S L. A review of recent developments of mesoporous materials[J]. The Chemical Record, 2017, 17(12): 1169-1183.
|
15 |
VADILLO J M, GÓMEZ-COMA L, GAREA A, et al. Hollow fiber membrane contactors in CO2 desorption: a review[J]. Energy & Fuels, 2021, 35(1): 111-136.
|
16 |
MA Y J, WANG Z M, XU X F, et al. Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2 [J]. Chinese Journal of Catalysis, 2017, 38(12): 1956-1969.
|
17 |
KUNDU N, SARKAR S. Porous organic frameworks for carbon dioxide capture and storage[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105090.
|
18 |
DHANKHAR S S, NAGARAJA C M. Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions[J]. Microporous and Mesoporous Materials, 2020, 308: 110314.
|
19 |
WANG Z F, ZHANG S N, CHEN Y, et al. Covalent organic frameworks for separation applications[J]. Chemical Society Reviews, 2020, 49(3): 708-735.
|
20 |
YOU J H, ZHAO Y, WANG L, et al. Recent developments in the photocatalytic applications of covalent organic frameworks: a review[J]. Journal of Cleaner Production, 2021, 291: 125822.
|
21 |
ANIRUDDHA R, SREEDHAR I, REDDY B M. MOFs in carbon capture-past, present and future[J]. Journal of CO2 Utilization, 2020, 42: 101297.
|
22 |
HISAKI I, XIN C, TAKAHASHI K, et al. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity[J]. Angewandte Chemie, 2019, 58(33): 11160-11170.
|
23 |
KATO M. Developments on the studies of covalent organic frameworks (COF)[J]. Journal of Synthetic Organic Chemistry, Japan, 2019, 77(2): 185-186.
|
24 |
CHEN S S, LIU M, ZHANG J D, et al. Photoresponsive dynamic covalent bond based on addition-fragmentation chain transfer of allyl selenides[J]. Polymer Chemistry, 2021, 12(11): 1622-1626.
|
25 |
MONDAL S, HALDAR D. A transient non-covalent hydrogel by a supramolecular gelator with dynamic covalent bonds[J]. New Journal of Chemistry, 2021, 45(10): 4773-4779.
|
26 |
FONG K D, WANG T S, SMOUKOV S K. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes[J]. Sustainable Energy & Fuels, 2017, 1(9): 1857-1874.
|
27 |
PUTZ A M, CIOPEC M, NEGREA A, et al. Comparison of structure and adsorption properties of mesoporous silica functionalized with aminopropyl groups by the co-condensation and the post grafting methods[J]. Materials, 2021, 14(3): 628.
|
28 |
CHEN H G, ZHANG X, LIN Z Y, et al. In situ preparation of mechanically enhanced hydrogel via dispersion polymerization in aqueous solution[J]. Macromolecular Rapid Communications, 2021, 42(18): 2100028.
|
29 |
RIBEIRO J, NUNES E H M, VASCONCELOS D C L, et al. Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption[J]. Journal of Porous Materials, 2019, 26(6): 1581-1591.
|
30 |
WANG D K, XUE Y M, WANG C Y, et al. Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers[J]. Journal of Materials Science, 2019, 54(14): 10168-10178.
|
31 |
HOSSEINI MONJEZI B, KUTONOVA K, TSOTSALAS M, et al. Current trends in metal-organic and covalent organic framework membrane materials[J]. Angewandte Chemie, 2021, 60(28): 15153-15164.
|
32 |
ZHAO W, QIAO J, NING T L, et al. Scalable ambient pressure synthesis of covalent organic frameworks and their colorimetric nanocomposites through dynamic imine exchange reactions[J]. Chinese Journal of Polymer Science, 2018, 36(1): 1-7.
|
33 |
GU R R, FLIDROVA K, LEHN J M. Dynamic covalent metathesis in the C ̿ C/C ̿ N exchange between Knoevenagel compounds and imines[J]. J. Am. Chem. Soc., 2018, 140(16): 5560-5568.
|
34 |
LIU X H, LIANG L Y, LU M P, et al. Water-resistant bio-based vitrimers based on dynamic imine bonds: self-healability, remodelability and ecofriendly recyclability[J]. Polymer, 2020, 210: 123030.
|
35 |
WANG Y, XIAO G F, PENG Y Y, et al. Effects of cellulose nanofibrils on dialdehyde carboxymethyl cellulose based dual responsive self-healing hydrogel[J]. Cellulose, 2019, 26(16): 8813-8827.
|
36 |
CHENG Y H, CHEN W P, SHEN Z H, et al. Influences of hydrogen bonding and peripheral chain length on mesophase structures of mesogen-jacketed liquid crystalline polymers with amide side-chain linkages[J]. Macromolecules, 2011, 44(6): 1429-1437.
|
37 |
LI X Y, CAI W Z, LI D S, et al. Amorphous alloys for electrocatalysis: the significant role of the amorphous alloy structure[J]. Nano Research, 2021. DOI: 10.1007/S12274-021-3682-7 .
|
38 |
GAO S H, JIA J L, CHEN S Q, et al. Oxide-derived nanostructured metallic-glass electrodes for efficient electrochemical hydrogen generation[J]. RSC Advances, 2017, 7(43): 27058-27064.
|
39 |
BELOWICH M E, STODDART J F. Dynamic imine chemistry[J]. Chemical Society Reviews, 2012, 41(6): 2003-2024.
|
40 |
KONG W P, LIU J. Ordered mesoporous carbon with enhanced porosity to support organic amines: efficient nanocomposites for the selective capture of CO2 [J]. New Journal of Chemistry, 2019, 43(15): 6040-6047.
|
41 |
MCDONALD T M, MASON J A KONG X, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks[J]. Nature, 2015, 519(7543): 303-308.
|
42 |
ZHOU Z, BALIJEPALLI S K, NGUYEN-SORENSON A H T, et al. Steam-stable covalently bonded polyethylenimine modified multiwall carbon nanotubes for carbon dioxide capture[J]. Energy & Fuels, 2018, 32(11): 11701-11709.
|
43 |
UPTMOOR A C, GEYER F L, ROMINGER F, et al. Tetrahedral tetrakis(p-ethynylphenyl) group Ⅳ compounds in microporous polymers: effect of tetrel on porosity[J]. ChemPlusChem, 2018, 83(5): 448-454.
|
44 |
ZHANG G J, ZHAO P Y, HAO L X, et al. A novel amine double functionalized adsorbent for carbon dioxide capture using original mesoporous silica molecular sieves as support[J]. Separation and Purification Technology, 2019, 209: 516-527.
|
45 |
REZAEI F, SAKWA-NOVAK M A, BALI S, et al. Shaping amine-based solid CO2 adsorbents: effects of pelletization pressure on the physical and chemical properties[J]. Microporous and Mesoporous Materials, 2015, 204: 34-42.
|