化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3855-3864.DOI: 10.16085/j.issn.1000-6613.2021-1673
收稿日期:
2021-08-06
修回日期:
2021-08-26
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
邱琪丽
作者简介:
邱琪丽(1991—),女,博士,讲师,研究方向为垃圾焚烧飞灰的无害化处置与综合利用。E-mail:基金资助:
Received:
2021-08-06
Revised:
2021-08-26
Online:
2022-07-25
Published:
2022-07-23
Contact:
QIU Qili
摘要:
随着垃圾焚烧处置技术的推广和应用,垃圾焚烧飞灰产量逐年增加,传统填埋处置方式存在成本高、填埋场资源不足等问题,因此飞灰的综合利用问题广受关注。由于飞灰富含SiO2、Al2O3等活性物质,在污染物的吸附脱除领域具有良好的应用前景。本文主要结合垃圾焚烧飞灰的理化特性,介绍了垃圾焚烧飞灰在不同废水废气中的污染物吸附脱除效果。综合近年来污染物脱除研究情况,着重介绍了原始飞灰和改性飞灰在重金属、磷盐、染料等污染物脱除中的应用效果、机理,指出了目前存在的主要问题,并对不同的应用工艺进行了成本分析和优缺点对比。最后提出了需要继续深入微波水热在提高飞灰吸附性的应用研究和进一步完善飞灰在污染物控制领域应用的全过程研究的建议与展望。
中图分类号:
邱琪丽, 蒋旭光. 垃圾焚烧飞灰在污染物控制领域中的应用探讨[J]. 化工进展, 2022, 41(7): 3855-3864.
QIU Qili, JIANG Xuguang. Application of municipal solid waste incineration fly ash in the field of pollutant control[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3855-3864.
参考文献 | 主要化学成分及其质量分数/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | Na2O | SO3 | Cl | |
[ | 21.5 | 19.3 | 7.7 | 3.8 | 3.3 | 4.7 | 6.5 | 10.6 | 6.8 |
[ | 23.8 | 15.2 | 5.7 | 4.8 | 4.2 | 3.9 | 7.3 | 8.2 | 8.4 |
[ | 20.2 | 22.4 | 9.7 | 3.6 | 2.6 | 2.5 | 2.2 | 5.2 | 6.8 |
[ | 19.6 | 28.2 | 14.0 | 5.2 | 2.8 | 2.2 | 2.6 | 5.3 | 3.9 |
[ | 33.8 | 13.9 | 3.7 | 1.4 | 1.3 | 3.2 | 2.8 | 6.2 | 10.7 |
[ | 39.1 | 15.9 | 4.4 | 1.9 | 1.6 | 3.7 | 3.4 | 7.2 | 11.9 |
[ | 33.6 | 26.0 | 3.9 | 2.4 | 3.2 | 6.0 | 4.0 | — | 11.4 |
[ | 29.5 | 24.6 | 7.3 | 4.3 | 3.2 | 3.6 | — | 7.8 | — |
[ | 22.0 | 26.1 | 9.2 | 5.3 | 3.3 | 6.0 | 5.0 | 2.9 | — |
[ | 26.8 | 34.0 | 16.3 | 4.4 | 3.1 | 1.8 | 2.2 | 2.5 | — |
表1 文献报道的垃圾焚烧飞灰主要化学成分及其质量分数
参考文献 | 主要化学成分及其质量分数/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | Na2O | SO3 | Cl | |
[ | 21.5 | 19.3 | 7.7 | 3.8 | 3.3 | 4.7 | 6.5 | 10.6 | 6.8 |
[ | 23.8 | 15.2 | 5.7 | 4.8 | 4.2 | 3.9 | 7.3 | 8.2 | 8.4 |
[ | 20.2 | 22.4 | 9.7 | 3.6 | 2.6 | 2.5 | 2.2 | 5.2 | 6.8 |
[ | 19.6 | 28.2 | 14.0 | 5.2 | 2.8 | 2.2 | 2.6 | 5.3 | 3.9 |
[ | 33.8 | 13.9 | 3.7 | 1.4 | 1.3 | 3.2 | 2.8 | 6.2 | 10.7 |
[ | 39.1 | 15.9 | 4.4 | 1.9 | 1.6 | 3.7 | 3.4 | 7.2 | 11.9 |
[ | 33.6 | 26.0 | 3.9 | 2.4 | 3.2 | 6.0 | 4.0 | — | 11.4 |
[ | 29.5 | 24.6 | 7.3 | 4.3 | 3.2 | 3.6 | — | 7.8 | — |
[ | 22.0 | 26.1 | 9.2 | 5.3 | 3.3 | 6.0 | 5.0 | 2.9 | — |
[ | 26.8 | 34.0 | 16.3 | 4.4 | 3.1 | 1.8 | 2.2 | 2.5 | — |
处理工艺 | 成本/CNY·t-1飞灰 |
---|---|
水洗 | 6~30 |
酸洗 | 14~140 |
碱洗 | 96~960 |
传统水热 | 3000~5000 |
微波水热 | 1200~1500 |
酸洗+热处理 | 1000~2000 |
烧结/玻璃化/熔融 | 1000~5000 |
微波烧结 | 1000~2500 |
表2 垃圾焚烧飞灰改性过程成本分析[1, 18, 46, 53]
处理工艺 | 成本/CNY·t-1飞灰 |
---|---|
水洗 | 6~30 |
酸洗 | 14~140 |
碱洗 | 96~960 |
传统水热 | 3000~5000 |
微波水热 | 1200~1500 |
酸洗+热处理 | 1000~2000 |
烧结/玻璃化/熔融 | 1000~5000 |
微波烧结 | 1000~2500 |
改性工艺 | 适用范围 | 主要应用对象 | 操作工艺 | 能耗成本 | 处置效果 | 产物毒性 | 其他 |
---|---|---|---|---|---|---|---|
无 | 小 | 亚甲基蓝等染料、磷盐、氨氮 | 简易 | 低 | 90%以上 | 高 | 对废水中重金属离子 的脱除效果较差 |
H2S气体 | 无 | 优于粉煤灰(约15mg/g) | |||||
水洗/酸洗/碱洗 | 小 | 亚甲基蓝等 染料、磷盐 | 较简易 | 极低 | 接近100% | 高 | 产生大量高氯废水和重金属废水 |
传统水热 | 大 | 重金属、磷盐、 染料等 | 复杂 | 较高 | 较好 | 低,能同时实现飞灰自身重金属、二??英等物质的稳定与脱毒 | 处置耗时长,产生少量废水 |
微波水热 | 较高,但远 低于传统水热 | 设备资金投入大,连续性运作实现较为困难 | |||||
烧结/玻璃化/熔融等热处理 | 大 | 制备微晶玻璃、陶瓷等 | 复杂 | 极高 | 好 | 极低 | 产物价值高 |
微波烧结 | 大 | 高 | 好 |
表3 垃圾焚烧飞灰的几种应用形式及优缺点对比[18, 57, 74-75]
改性工艺 | 适用范围 | 主要应用对象 | 操作工艺 | 能耗成本 | 处置效果 | 产物毒性 | 其他 |
---|---|---|---|---|---|---|---|
无 | 小 | 亚甲基蓝等染料、磷盐、氨氮 | 简易 | 低 | 90%以上 | 高 | 对废水中重金属离子 的脱除效果较差 |
H2S气体 | 无 | 优于粉煤灰(约15mg/g) | |||||
水洗/酸洗/碱洗 | 小 | 亚甲基蓝等 染料、磷盐 | 较简易 | 极低 | 接近100% | 高 | 产生大量高氯废水和重金属废水 |
传统水热 | 大 | 重金属、磷盐、 染料等 | 复杂 | 较高 | 较好 | 低,能同时实现飞灰自身重金属、二??英等物质的稳定与脱毒 | 处置耗时长,产生少量废水 |
微波水热 | 较高,但远 低于传统水热 | 设备资金投入大,连续性运作实现较为困难 | |||||
烧结/玻璃化/熔融等热处理 | 大 | 制备微晶玻璃、陶瓷等 | 复杂 | 极高 | 好 | 极低 | 产物价值高 |
微波烧结 | 大 | 高 | 好 |
1 | 蒋旭光, 邱琪丽, 倪明江. 微波技术在垃圾焚烧飞灰处置利用中的应用探讨[J]. 化工进展, 2015, 34(12): 4361-4367. |
JIANG Xuguang, QIU Qili, NI Mingjiang. Application of microwave heating in disposal and utilization of MSW fly ash[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4361-4367. | |
2 | ZACCO A, BORGESE L, GIANONCELLI A, et al. Review of fly ash inertisation treatments and recycling[J]. Environmental Chemistry Letters, 2014, 12(1): 153-175. |
3 | CHEN Z L, ZHANG S, LIN X Q, et al. Decomposition and reformation pathways of PCDD/Fs during thermal treatment of municipal solid waste incineration fly ash[J]. Journal of Hazardous Materials, 2020, 394: 122526. |
4 | SUN X F, LI J H, ZHAO X D, et al. A review on the management of municipal solid waste fly ash in American[J]. Procedia Environmental Sciences, 2016, 31: 535-540. |
5 | RUJ B, GHOSH S. Technological aspects for thermal plasma treatment of municipal solid waste — A review[J]. Fuel Processing Technology, 2014, 126: 298-308. |
6 | QIU Q L, JIANG X G, LYU G, et al. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment[J]. Powder Technology, 2018, 335: 156-163. |
7 | 施惠生, 程鹏, 郭晓潞. 水洗城市生活垃圾焚烧飞灰在水泥生产中资源化利用的研究现状[J]. 粉煤灰综合利用, 2013, 26(6): 51-56. |
SHI Huisheng, CHENG Peng, GUO Xiaolu. A study on the cracking resistance theory at early ages of high performance concrete added with lithium slag and fly ash[J]. Fly Ash Comprehensive Utilization, 2013, 26(6): 51-56. | |
8 | 王雷, 金宜英, 李润东, 等. 生活垃圾焚烧飞灰的污染特性[J]. 环境科学与技术, 2010, 33(7): 21-26, 51. |
WANG Lei, JIN Yiying, LI Rundong, et al. Characterization of MSWI fly ash[J]. Environmental Science & Technology, 2010, 33(7): 21-26, 51. | |
9 | 梁梅, 黎小保, 刘海威, 等. 生活垃圾焚烧飞灰基本特性及稳定化研究[J]. 环境卫生工程, 2014, 22(3): 1-3. |
LIANG Mei, LI Xiaobao, LIU Haiwei, et al. Characteristics and stabilization of fly ash from domestic waste incineration[J]. Environmental Sanitation Engineering, 2014, 22(3): 1-3. | |
10 | 魏春梅. 垃圾焚烧飞灰重金属高温熔融分离过程动力学研究[D]. 重庆: 重庆大学, 2011. |
WEI Chunmei. Kinetic study of heavy metals during melting seperation process of MSW incineration fly ash[D]. Chongqing: Chongqing University, 2011. | |
11 | 罗忠涛, 肖宇领, 郑亚然, 等. 垃圾焚烧飞灰双重固化全过程重金属浸出特征[J]. 济南大学学报(自然科学版), 2014, 28(3): 179-183. |
LUO Zhongtao, XIAO Yuling, ZHENG Yaran, et al. Leaching features of heavy metals in the dual-curing process of MSWI fly ash[J]. Journal of University of Jinan (Science and Technology), 2014, 28(3): 179-183. | |
12 | 王彩萍, 周明凯, 陈潇, 等. 氯氧镁水泥对焚烧飞灰固化作用及影响因素[J]. 功能材料, 2013, 44(21): 3186-3189. |
WANG Caiping, ZHOU Mingkai, CHEN Xiao, et al. Experimental study on the solidification technology and affecting factors in treating with fly ash using magnesium oxychloride cement[J]. Journal of Functional Materials, 2013, 44(21): 3186-3189. | |
13 | 施惠生, 吴凯, 郭晓潞, 等. 垃圾焚烧飞灰研制硫铝酸盐水泥及其水化特性[J]. 建筑材料学报, 2011, 14(6): 730-735, 751. |
SHI Huisheng, WU Kai, GUO Xiaolu, et al. Preparation of sulphoaluminate cement from municipal solid waste incineration fly ash and its hydration properties[J]. Journal of Building Materials, 2011, 14(6): 730-735, 751. | |
14 | 郭晓潞, 施惠生. 垃圾焚烧飞灰制硫铝酸钙复合水泥基材料的耐久性[J]. 非金属矿, 2013, 36(2): 68-71. |
GUO Xiaolu, SHI Huisheng. Durability of calcium sulphoaluminate composite cement-based materials from municipal solid waste incineration fly ash[J]. Non-Metallic Mines, 2013, 36(2): 68-71. | |
15 | 多丽娜, 魏国侠, 刘汉桥, 等. 铁浆法回收垃圾焚烧飞灰中重金属的实验研究[J]. 环境卫生工程, 2013, 21(4): 1-4. |
Lina DUO, WEI Guoxia, LIU Hanqiao, et al. Experimental study on recycling heavy metals from waste incineration fly ash with iron slurry method[J]. Environmental Sanitation Engineering, 2013, 21(4): 1-4. | |
16 | 刘彦博, 商平, 刘汉桥, 等. 垃圾焚烧飞灰固化/稳定化实验研究[J]. 环境卫生工程, 2010, 18(2): 15-18. |
LIU Yanbo, SHANG Ping, LIU Hanqiao, et al. Experimental study on solidification/stabilization for fly ash from waste incineration[J]. Environmental Sanitation Engineering, 2010, 18(2): 15-18. | |
17 | TAN W F, WANG L A, HUANG C, et al. Municipal solid waste incineration fly ash sintered lightweight aggregates and kinetics model establishment[J]. International Journal of Environmental Science and Technology, 2013, 10(3): 465-472. |
18 | 马晓军. 水热法处理生活垃圾焚烧飞灰中重金属和二𫫇英的研究[D]. 杭州: 浙江大学, 2013. |
MA Xiaojun. Study on hydrothermal treatment of heavy metals and PCDD/Fs in MSWI fly ash[D]. Hangzhou: Zhejiang University, 2013. | |
19 | 柴晓利, 王冬扬, 高桥史武, 等. 我国典型垃圾焚烧飞灰物化特性对比[J]. 同济大学学报(自然科学版), 2012, 40(12): 1857-1862. |
CHAI Xiaoli, WANG Dongyang, FUMITAKE Takahashi, et al. Physicochemical characteristics of typical fly ashes of solid waste incineration plants in China[J]. Journal of Tongji University (Natural Science), 2012, 40(12): 1857-1862. | |
20 | ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825. |
21 | WU K, SHI H S, GUO X L. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production[J]. Waste Management, 2011, 31(9/10): 2001-2008. |
22 | WU K, SHI H S, SCHUTTER G, et al. Experimental study on alinite ecocement clinker preparation from municipal solid waste incineration fly ash[J]. Materials and Structures, 2012, 45(8): 1145-1153. |
23 | VIZCARRA G O C, CASAGRANDE M D T, MOTTA L M G DA. Applicability of municipal solid waste incineration ash on base layers of pavements[J]. Journal of Materials in Civil Engineering, 2014, 26(6): 06014005. |
24 | TAN W F, WANG L, HUANG C, et al. Utilization of municipal solid waste incineration fly ash in lightweight aggregates[J]. Journal of Central South University, 2012, 19(3): 835-841. |
25 | XUE Y J, HOU H B, ZHU S J, et al. Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: pavement performance and environmental impact[J]. Construction and Building Materials, 2009, 23(2): 989-996. |
26 | 李建新, 王永川, 严建华. 城市垃圾焚烧飞灰资源化利用前景分析[J]. 电站系统工程, 2008, 24(1): 9-11. |
LI Jianxin, WANG Yongchuan, YAN Jianhua. Analysis of the reuse of municipal solid waste fly ash[J]. Power System Engineering, 2008, 24(1): 9-11. | |
27 | 张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11): 2749-2756. |
ZHANG Fan, LI Jing, TAN Jianhua, et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2749-2756. | |
28 | XUE Q, LI J S, WANG P, et al. Removal of heavy metals from landfill leachate using municipal solid waste incineration fly ash as adsorbent[J]. Clean: Soil Air Water, 2014, 42(11): 1626-1631. |
29 | SUN X L, GUO Y, YAN Y B, et al. Co-processing of MSWI fly ash and copper smelting wastewater and the leaching behavior of the co-processing products in landfill leachate[J]. Waste Management, 2019, 95: 628-635. |
30 | QIAN G R, CAO Y L, CHUI P, et al. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge[J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 274-281. |
31 | 董静兰, 耿晓, 刘彦丰, 等. 飞灰中活性SiO2吸附痕量元素汞的DFT研究[J]. 动力工程学报, 2019, 39(11): 919-925. |
DONG Jinglan, GENG Xiao, LIU Yanfeng, et al. DFT study on adsorption mechanism of trace element mercury by active SiO2 in fly ash[J]. Journal of Chinese Society of Power Engineering, 2019, 39(11): 919-925. | |
32 | 董静兰, 耿晓, 高正阳, 等. 飞灰中的缺陷位SiO2对痕量元素As的吸附机理[J]. 燃料化学学报, 2018, 46(11): 1401-1408. |
DONG Jinglan, GENG Xiao, GAO Zhengyang, et al. Adsorption mechanism of trace As on the defect sites of SiO2 in fly ash[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1401-1408. | |
33 | 高正阳, 李明晖, 韩文涛, 等. 飞灰未燃尽碳吸附(HgS) n 及(HgO) n 的量化分析[J]. 热能动力工程, 2018, 33(6): 66-70, 76. |
GAO Zhengyang, LI Minghui, HAN Wentao, et al. Quantitative analysis of the adsorption of (HgS) n and (HgO) n by unburned carbon in flying ashes[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(6): 66-70, 76. | |
34 | DANESHGAR S, CALLEGARI A, CAPODAGLIO A, et al. The potential phosphorus crisis: resource conservation and possible escape technologies: a review[J]. Resources, 2018, 7(2): 37. |
35 | SHAMS M, NABIPOUR I, DOBARADARAN S, et al. An environmental friendly and cheap adsorbent (municipal solid waste compost ash) with high efficiency in removal of phosphorus from aqueous solution[J]. Fresenius Environmental Bulletin, 2013, 22(3): 723-727. |
36 | ZHONG S, GAO H, KUANG W, et al. Mechanism of high concentration phosphorus wastewater treated by municipal solid waste incineration fly ash[J]. Journal of Central South University, 2014, 21(5): 1982-1988. |
37 | 钟山, 王里奥, 刘元元, 等. 垃圾焚烧飞灰处理高浓度含磷废水的动力学[J]. 土木建筑与环境工程, 2009, 31(5): 117-121. |
ZHONG SHAN, WANG Li’ao, LIU Yuanyuan, et al. Kinetics of concentrated phosphates removal by municipal solid waste incineration fly ash[J]. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(5): 117-121. | |
38 | 杨田田, 刘珊, 鞠勇明, 等. 生活垃圾焚烧飞灰吸附含磷废水的研究[J]. 水处理技术, 2018, 44(8): 66-70. |
YANG Tiantian, LIU Shan, JU Yongming, et al. The adsorption of phosphate ions in wastewater by municipal solid waste incinerations fly ash[J]. Technology of Water Treatment, 2018, 44(8): 66-70. | |
39 | GU S, FU B T, AHN J W, et al. Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea[J]. Journal of Cleaner Production, 2021, 280: 124430. |
40 | 孟棒棒, 田书磊, 李松, 等. 焚烧飞灰协同去除垃圾渗滤液纳滤膜浓缩液中CODCr的特性研究[J]. 环境科学研究, 2018, 31(12): 2133-2139. |
MENG Bangbang, TIAN Shulei, LI Song, et al. Synergistic removal characteristics of chemical oxygen demand from nanofiltration membrane concentrated leachate by municipal solid waste incineration fly ash[J]. Research of Environmental Sciences, 2018, 31(12): 2133-2139. | |
41 | 李彦辉. 垃圾焚烧飞灰对高含磷废液的去除效果与机理研究[D]. 杭州: 浙江大学, 2021. |
LI Yanhui. Research on the removal effect and mechanism of MSW incineration fly ash on high phosphorus wastewater[D]. Hangzhou: Zhejiang University, 2021. | |
42 | ANTUNES E, JACOB M V, BRODIE G, et al. Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 395-403. |
43 | CHEN J G, KONG H N, WU D Y, et al. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition[J]. Journal of Hazardous Materials, 2007, 139(2): 293-300. |
44 | 杨旭日. 印染废水处理工艺[J]. 现代工业经济和信息化, 2020, 10(12): 70-71. |
YANG Xuri. Printing and dyeing wastewater treatment process[J]. Modern Industrial Economy and Informationization, 2020, 10(12): 70-71. | |
45 | KANHAR A H, CHEN S Q, WANG F. Incineration fly ash and its treatment to possible utilization: a review[J]. Energies, 2020, 13(24): 6681. |
46 | 黎强, 周少奇, 李夫振, 等. 不同方法处理飞灰对亚甲基蓝的吸附性能[J]. 环境工程学报, 2015, 9(1): 367-373. |
LI Qiang, ZHOU Shaoqi, LI Fuzhen, et al. Adsorptive properties of municipal solid waste incinerator fly ash after different treatments to methylene blue[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 367-373. | |
47 | 李夫振, 周少奇, 黎强, 等. 垃圾焚烧飞灰对染料(亚甲基蓝)的吸附性能[J]. 环境工程学报, 2013, 7(10): 4072-4078. |
LI Fuzhen, ZHOU Shaoqi, LI Qiang, et al. Adsorption properties of municipal solid waste incineration fly ash for dye(methylene blue)[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 4072-4078. | |
48 | 方祝敏, 严密, 林杰, 等. 飞灰吸附亚甲基蓝的影响因素研究及其吸附模型探讨[J]. 环境污染与防治, 2018, 40(2): 210-212, 229. |
FANG Zhumin, YAN Mi, LIN Jie, et al. Adsorption influence factors of fly ash on methylene blue and its adsorption model discussion[J]. Environmental Pollution & Control, 2018, 40(2): 210-212, 229. | |
49 | ZHAO Y P, GUO D X, LI S F, et al. Removal of methylene blue by NaX zeolites synthesized from coal gasification fly ash using an alkali fusion-hydrothermal method[J]. Desalination and Water Treatment, 2020, 185: 355-363. |
50 | LI H, DAI M W, DAI S L, et al. Methylene blue adsorption properties of mechanochemistry modified coal fly ash[J]. Human and Ecological Risk Assessment: an International Journal, 2018, 24(8): 2133-2141. |
51 | BORHADE A V, KSHIRSAGAR T A, DHOLI A G. Eco-friendly synthesis of aluminosilicate bromo sodalite from waste coal fly ash for the removal of copper and methylene blue dye[J]. Arabian Journal for Science and Engineering, 2017, 42(10): 4479-4491. |
52 | 张海英, 赵由才, 祁景玉. 生活垃圾焚烧飞灰的物理化学特性[J]. 环境科学与技术, 2008, 31(11): 96-99. |
ZHANG Haiying, ZHAO Youcai, QI Jingyu. Physicochemical property of MSWI fly ash[J]. Environmental Science & Technology, 2008, 31(11): 96-99. | |
53 | WU H N, ZHU Y, BIAN S W, et al. H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization[J]. Chemosphere, 2018, 195: 40-47. |
54 | 朱彧, 吴昊, 徐期勇. 垃圾焚烧飞灰去除硫化氢气体[J]. 环境工程学报, 2015, 9(6): 2947-2954. |
ZHU Yu, WU Hao, XU Qiyong. Removal of hydrogen sulfide by municipal solid waste incineration fly ash[J]. Chinese Journal of Environmental Engineering, 2015, 9(6): 2947-2954. | |
55 | SHIM Y S, YOO Y S, RHEE S W, et al. Evaluation of pelletized adsorbent made for removing VOCs by MSWI fly ash (Ⅱ)[J]. Materials Science Forum, 2006, 510/511: 594-597. |
56 | BAN Hyojin, JEONG Jaea, LEE Wookeun. Characteristics of VOCs adsorption of brick prepared by MSWI fly ash[J]. Journal of Korean Society of Environmental Engineers, 2010, 32(9): 857-861. |
57 | 蒋旭光, 常威. 生活垃圾焚烧飞灰的处置及应用概况[J]. 浙江工业大学学报, 2015, 43(1): 7-17. |
JING Xuguang, CHANG Wei. Review for treatment and application of municipal solid waste incineration fly ash[J]. Journal of Zhejiang University of Technology, 2015, 43(1): 7-17. | |
58 | BUKHARI S S, BEHIN J, KAZEMIAN H, et al. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review[J]. Fuel, 2015, 140: 250-266. |
59 | ZHANG J J, ZHANG S G, LIU B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review[J]. Journal of Cleaner Production, 2020, 250: 119507. |
60 | HU Y Y, ZHANG P F, CHEN D Z, et al. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition[J]. Journal of Hazardous Materials, 2012, 207/208: 79-85. |
61 | QIU Q L, CHEN Q, JIANG X G, et al. Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment[J]. Chemosphere, 2019, 220: 1118-1125. |
62 | JIN Y Q, MA X J, JIANG X G, et al. Effects of hydrothermal treatment on the major heavy metals in fly ash from municipal solid waste incineration[J]. Energy & Fuels, 2013, 27(1): 394-400. |
63 | BAYUSENO A P, SCHMAHL W W, MÜLLEJANS T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 250-259. |
64 | SHIM Y S, LEE W K. Changes in adsorption characterization of MSWI fly ash by NaOH treatment[J]. Materials Science Forum, 2006, 510/511: 590-593. |
65 | YOO Y S, JO J H. Characteristics of MSWI ash and its application to zeolite synthesis[J]. Materials Science Forum, 2014, 804: 93-96. |
66 | FAN Y, ZHANG F S, ZHU J X,et al.Effective utilizatiom of waste ash from MSW and coal co-combustion power plant-zeolite synthesis[J].Journal of Hazardous Materials, 2008, 153:382-388. |
67 | MURAYAMA N, YAMAMOTO H, SHIBATA J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction[J]. International Journal of Mineral Processing, 2002, 64(1): 1-17. |
68 | FUKUI K, KATOH M, YAMAMOTO T, et al. Utilization of NaCl for phillipsite synthesis from fly ash by hydrothermal treatment with microwave heating[J]. Advanced Powder Technology, 2009, 20(1): 35-40. |
69 | 薛军, 王伟, 汪群慧. 微波加热在重金属浸出中的应用[J]. 有色金属, 2008(2): 75-80. |
XUE Jun, WANG Wei, WANG Quhui. Application of microwave heating in heavy metals leaching process[J]. Nonferrous Metals, 2008(2): 75-80. | |
70 | INADA M, TSUJIMOTO H, EGUCHI Y, et al. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process[J]. Fuel, 2005, 84(12/13): 1482-1486. |
71 | ALDAHRI T, BEHIN J, KAZEMIAN H, et al. Effect of microwave irradiation on crystal growth of zeolitized coal fly ash with different solid/liquid ratios[J]. Advanced Powder Technology, 2017, 28(11): 2865-2874. |
72 | QIU Q L, JIANG X G, LV G, et al. Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process[J]. Journal of Material Cycles and Waste Management, 2019, 21(3): 469-477. |
73 | CHEN Q, LONG L, LIU X B, et al. Low-toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-assisted hydrothermal process with fusion pretreatment[J]. Journal of Material Cycles and Waste Management, 2020, 22(4): 1196-1207. |
74 | FAN W D, LIU B, LUO X, et al. Production of glass-ceramics using municipal solid waste incineration fly ash[J]. Rare Metals, 2019, 38(3): 245-251. |
75 | FAN W D, YANG Q W, GUO B, et al. Crystallization mechanism of glass-ceramics prepared from stainless steel slag[J]. Rare Metals, 2018, 37(5): 413-420. |
76 | CHOU S Y, LO S L, HSIEH C H, et al. Sintering of MSWI fly ash by microwave energy[J]. Journal of Hazardous Materials, 2009, 163(1): 357-362. |
77 | 王俊. 利用垃圾焚烧飞灰制备吸附材料对废水中铅离子吸附的研究[D]. 北京: 北京化工大学, 2019. |
WANG Jun. Study on adsorption of Pb2+ in wastewater by waste incineration fly ash composites[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
78 | 王俊, 尹一林, 李增和. 垃圾燃烧飞灰合成材料对Pb2+的吸附[J]. 化工科技, 2019, 27(3): 50-55. |
WANG Jun, YIN Yilin, LI Zenghe. Removal of Pb2+ by waste incineration fly ash composite[J]. Science & Technology in Chemical Industry, 2019, 27(3): 50-55. | |
79 | 刘金英. 超声波处理垃圾焚烧飞灰后重金属固化与其吸附性能的研究[D]. 杭州: 浙江大学, 2021. |
LIU Jinying. Study on the solidification of heavy metals and adsorptive properties of ultrasonic treatment of waste incineration fly ash[D]. Hangzhou: Zhejiang University, 2021. | |
80 | 赵杰, 郑仙荣, 樊保国, 等. 载锰飞灰吸附剂脱除SO2的实验研究[J]. 中国电机工程学报, 2019, 39(15): 4504-4515. |
ZHAO Jie, ZHENG Xianrong, FAN Baoguo, et al. Experimental study on SO2 removal by manganese-loaded fly ash adsorbents[J]. Proceedings of the CSEE, 2019, 39(15): 4504-4515. | |
81 | 郑中阳. 燃烧电厂飞灰吸附污染物机理研究[D]. 北京: 华北电力大学, 2015. |
ZHENG Zhongyang. Mechanism of pollutants adsorbed by fly ash in coal fired power plant[D]. Beijing: North China Electric Power University, 2015. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893. |
[9] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[12] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[13] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[14] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |