化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3840-3854.doi: 10.16085/j.issn.1000-6613.2021-1835
收稿日期:
2021-08-27
修回日期:
2021-12-06
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
杨哲
E-mail:wuchp.qday@sinopec.com;yangzhe.qday@sinopec.com
作者简介:
武传朋(1990—),男,博士,工程师,主要从事石油化工工艺、化工过程安全工程技术研发。E-mail:基金资助:
WU Chuanpeng(), LI Chuankun, YANG Zhe(
), GOU Chengdong, GAO Xinjiang
Received:
2021-08-27
Revised:
2021-12-06
Online:
2022-07-25
Published:
2022-07-23
Contact:
YANG Zhe
E-mail:wuchp.qday@sinopec.com;yangzhe.qday@sinopec.com
摘要:
SO2由于对人类健康和生态环境的有害影响,成为当前人们关注和研究的焦点。吸附法脱除SO2无含硫废水产生且能实现硫资源的回收利用,是SO2治理的有效方法,其中吸附材料的选择是吸附系统设计和开发的关键。本文对近年来固体吸附材料脱除SO2的研究现状进行了综述,重点梳理和分析了不同类型固体材料对SO2的吸附性能及吸附机理,并进一步指出了不同类型固体材料在SO2吸附脱除过程中所存在的问题。最后结合固体材料吸附脱除SO2研究现状提出吸附法脱硫领域目前有待解决的主要问题,以期为吸附法脱硫技术的开发提供参考,并建议未来吸附法烟气治理领域向着一体化脱除多种烟气杂质的方向发展。
中图分类号:
武传朋, 李传坤, 杨哲, 苟成冬, 高新江. 固体吸附材料脱除SO2研究进展[J]. 化工进展, 2022, 41(7): 3840-3854.
WU Chuanpeng, LI Chuankun, YANG Zhe, GOU Chengdong, GAO Xinjiang. Research progress of SO2 removal by solid adsorbents[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3840-3854.
表3
金属氧化物改性碳基材料应用于烟气脱硫研究结果"
吸附剂 | 吸附容量 /mg·g-1 | 气体流量 /mL·min-1 | 吸附温度 /℃ | 体积分数φ/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
SO2 | O2 | H2O | 其他气体 | |||||
AC-Cop | 174.8 | 1200 | 80 | 0.30 | 10 | — | N2 | [ |
Co3O4/ACM | 123.1 | 400 | 100 | 0.03 | — | — | — | [ |
1.3% Fe/AC | 125 | 50 | 100 | 0.10 | 5 | 10 | N2 | [ |
3.5% Fe/AC | 35 | — | 200 | 0.12 | 6 | 5 | Ar | [ |
4%Cu-4%V/AC | 140 | 100 | 20 | 0.47 | 0 | 0 | Ar | [ |
10% Cu/AC | 42 | — | 250 | 0.04 | 7.68 | 0 | N2 | [ |
6%AC-Cu | 219.2 | 350 | 80 | 0.3 | 10 | 10 | N2 | [ |
表4
分子筛应用于烟气脱硫研究结果"
吸附剂 | 吸附容量 /mg·g-1 | 气体流量 /mL·min-1 | 吸附温度 /℃ | 体积分数φ/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
SO2 | O2 | H2O | 其他气体 | |||||
Y (FAU) | 约170 | 135 | 25 | 1.850 | 0 | 0 | N2 | [ |
ZSM-5 (MFI) | 13~39 | 2000 | 50 | 0.200 | 0 | 0 | N2 | [ |
丝光沸石(MOR) | 25~171 | 2000 | 50 | 0.200 | 0 | 0 | N2 | [ |
丝光沸石(MOR) | 28~164 | 150 | 50 | 0.200 | 0 | 0 | N2 | [ |
粉煤灰基Y/X | 7 | 600 | 室温 | 0.200 | 10 | 0 | N2 | [ |
粉煤灰基分子筛 | 49 | 100 | 25 | 0.200 | 0 | 0 | N2 | [ |
硅质岩分子筛 | 8~38 | 150 | 25~800 | 0.190 | 10.1 | 0 | N2 | [ |
活性炭-13X | 50.3 | — | — | — | — | — | — | [ |
表8
负载型金属氧化物用于烟气脱硫研究结果"
吸附剂 | 吸附容量 /mg·g-1 | 气体流量 /mL·min-1 | 吸附温度 /℃ | 体积分数φ/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|
SO2 | O2 | H2O | 其他气体 | |||||
4.9%CuO/γ-Al2O3 | 65 | — | 300 | 0.80 | 2.9 | — | He | [ |
8%CuO/γ-Al2O3 | 115 | 460 | 400 | 0.15 | 5.6 | 3 | Ar | [ |
5%LiCl-CuO/γ-Al2O3 | 460 | 900 | 500 | 1.50 | — | — | 空气 | [ |
6.5%LiCl-CuO/γ-Al2O3 | 600 | 900 | 500 | 1.50 | — | — | 空气 | [ |
Na-Mn-CaO/γ-Al2O3 | 1520 | 200 | 250 | 0.005 | 12 | 0 | He | [ |
[w(Ca=5.5%,w(Na)=9.2%,w(Mn)=2.8%] | 2080 | 200 | 250 | 0.005 | 12 | 10 | He | [ |
1%Pt/CeO2 | 18~27 | 3500 | 200~400 | 0.001 | 7 | 0 | Ar | [ |
4 | LIU Y, BISSON T M, YANG H Q, et al. Recent developments in novel sorbents for flue gas clean up[J]. Fuel Processing Technology, 2010, 91(10): 1175-1197. |
5 | GAO X, LIU S J, ZHANG Y, et al. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO[J]. Journal of Hazardous Materials, 2011, 188(1/2/3): 58-66. |
6 | BAI B C, LEE C W, LEE Y S, et al. Metal impregnate on activated carbon fiber for SO2 gas removal: a ssessment of pore structure, Cu supporter, breakthrough, and bed utilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 73-79. |
7 | ZHANG K, HE Y, WANG Z H, et al. Multi-stage semi-coke activation for the removal of SO2 and NO[J]. Fuel,2017,210: 738-747. |
8 | CHENG G, ZHANG C X. Desulfurization and denitrification technologies of coal-fired flue gas[J]. Polish Journal of Environmental Studies, 2018, 27(2): 481-489. |
9 | LIU S J, YU X N, LIN G X, et al. Insights into the effect of adsorption-desorption cycles on SO2 removal over an activated carbon[J]. Aerosol and Air Quality Research, 2019, 19(2): 411-421. |
10 | LI B, MA C Y. Study on the mechanism of SO2 removal by activated carbon[J]. Energy Procedia, 2018, 153: 471-477. |
11 | KARATEPE N, ORBAK İ, YAVUZ R, et al. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties[J]. Fuel, 2008, 87(15/16): 3207-3215. |
12 | RAYMUNDO-PIÑERO E, CAZORLA-AMORÓS D, SALINAS-MARTINEZ DE LECEA C, et al. Factors controling the SO2 removal by porous carbons: relevance of the SO2 oxidation step[J]. Carbon, 2000, 38(3): 335-344. |
13 | WANG A N, FAN R Q, PI X X, et al. Nitrogen-doped microporous carbons derived from pyridine ligand-based metal-organic complexes as high-performance SO2 adsorption sorbents[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37407-37416. |
14 | LI Y Q, YU Y F, LIU L, et al. Synthesis of N-doped carbon spheres using extended stöber method for SO2 adsorption[J]. Nano, 2017, 12(1): 1750004. |
15 | QIE Z P, SUN F, GAO J H, et al. Enhanced SO2 fluidized adsorption dynamic by hierarchically porous activated coke[J]. Journal of the Energy Institute, 2020, 93(2): 802-810. |
16 | ZHANG X, ZHENG H H, LI G Y, et al. Ammoniated and activated microporous biochar for enhancement of SO2 adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105119. |
17 | ALVAREZ-MERINO M A, CARRASCO-MARÍN F, MORENO-CASTILLA C. Adsorption of SO2 from flowing air by alkaline-oxide-containing activated carbons[J]. Applied Catalysis B: Environmental, 1997, 13(3/4): 229-240. |
18 | GUO J, LUA A C. Adsorption of sulfur dioxide onto activated carbons prepared from oil-palm shells impregnated with potassium hydroxide[J]. Journal of Chemical Technology & Biotechnology, 2000, 75(11): 971-976. |
19 | LIU D D, SU R, HAO Z K, et al. Catalytic effect of NaCl on the improvement of the physicochemical structure of coal-based activated carbons for SO2 adsorption[J]. Processes, 2019, 7(6): 338. |
20 | FORTIER H, ZELENIETZ C, DAHN T R, et al. SO2 adsorption capacity of K2CO3-impregnated activated carbon as a function of K2CO3 content loaded by soaking and incipient wetness[J]. Applied Surface Science, 2007, 253(6): 3201-3207. |
21 | LI J H, CHANG H Z, MA L, et al. Low-temperature selective catalytic reduction of NO x with NH3 over metal oxide and zeolite catalysts: a review[J]. Catalysis Today, 2011, 175(1): 147-156. |
22 | YUAN J, JIANG X, ZOU M J, et al. Copper ore-modified activated coke: highly efficient and regenerable catalysts for the removal of SO2 [J]. Industrial & Engineering Chemistry Research, 2018, 57(46): 15731-15739. |
23 | SILAS K, GHANI W A W A K, CHOONG T S Y, et al. Breakthrough studies of Co3O4 supported activated carbon monolith for simultaneous SO2/NO x removal from flue gas[J]. Fuel Processing Technology, 2018, 180: 155-165. |
24 | DAVINI P. Influence of surface properties and iron addition on the SO2 adsorption capacity of activated carbons[J]. Carbon, 2002, 40(5): 729-734. |
1 | REZAEI F, ROWNAGHI A A, MONJEZI S, et al. SO x /NO x removal from flue gas streams by solid adsorbents: a review of current challenges and future directions[J]. Energy & Fuels, 2015, 29(9): 5467-5486. |
2 | MATHIEU Y, TZANIS L, SOULARD M, et al. Adsorption of SO x by oxide materials: a review[J]. Fuel Processing Technology, 2013, 114: 81-100. |
25 | MA J R, LIU Z Y, LIU S J, et al. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures[J]. Applied Catalysis B: Environmental, 2003, 45(4): 301-309. |
26 | CARABINEIRO S A C, RAMOS A M, VITAL J, et al. Adsorption of SO2 using vanadium and vanadium-copper supported on activated carbon[J]. Catalysis Today, 2003, 78(1/2/3/4): 203-210. |
3 | ABDULRASHEED A A, JALIL A A, TRIWAHYONO S, et al. Surface modification of activated carbon for adsorption of SO2 and NO x : a review of existing and emerging technologies[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 1067-1085. |
27 | TSENG H H, WEY M Y. Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts[J]. Carbon, 2004, 42(11): 2269-2278. |
28 | YAO L, YANG L, JIANG W J, et al. Removal of SO2 from flue gas on a copper-modified activated coke prepared by a novel one-step carbonization activation blending method[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15693-15700. |
29 | MARCU I C, SANDULESCU I. Study of sulfur dioxide adsorption on Y zeolite[J]. Journal of the Serbian Chemical Society, 2004, 69(7): 563-569. |
30 | ROUF S A, EIĆ M. Adsorption of SO2 from wet mixtures on hydrophobic zeolites[J]. Adsorption, 1998, 4(1): 25-33. |
31 | TANTET J, EIĆ M, DESAI R. Breakthrough study of the adsorption and separation of sulfur dioxide from wet gas using hydrophobic zeolites[J]. Gas Separation & Purification, 1995, 9(3): 213-220. |
32 | NASLUZOV V A, SHOR A M, NÖRTEMANN F, et al. Density functional study of SO2 adsorption in HY zeolites[J]. Journal of Molecular Structure, 1999, 466(1/2/3): 235-244. |
33 | KIRSCHHOCK C E A, SULTANA A, GODARD E, et al. Adsorption chemistry of sulfur dioxide in hydrated Na-Y zeolite[J]. Angewandte Chemie International Edition, 2004, 43(28): 3722-3724. |
34 | SAKURAI Y, TAKAHASHI Y, MAKINO T. Laboratory measurement of absorption and oxidation of sulphur dioxide by zeolite[J]. Journal of Geochemical Exploration, 1998, 64(1/2/3): 315-319. |
35 | LANIECKI M, ZIOLEK M, KARGE H G. Effect of water on the formation of bisulfite ions upon sulfur dioxide adsorption onto faujasite-type zeolites[J]. The Journal of Physical Chemistry, 1987, 91(1): 4-6. |
36 | SRINIVASAN A, GRUTZECK M W. The adsorption of SO2 by zeolites synthesized from fly ash[J]. Environmental Science & Technology, 1999, 33(9): 1464-1469. |
37 | PEDROLO D R S, DE MENEZES QUINES L K, DE SOUZA G, et al. Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4788-4794. |
38 | GOLLAKOTA S V, CHRISWELL C D. Study of an adsorption process using silicalite for sulfur dioxide removal from combustion gases[J]. Industrial & Engineering Chemistry Research, 1988, 27(1): 139-143. |
39 | BU N J, WU J, MAO R, et al. Characterization of activated carbon-13X zeolite composite and its adsorption mechanism on SO2 [J]. Journal of Nanoscience and Nanotechnology, 2016, 16(8): 8839-8845. |
40 | IVANOVA E, KOUMANOVA B. Adsorption of sulfur dioxide on natural clinoptilolite chemically modified with salt solutions[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 306-312. |
41 | TERAOKA Y, MOTOI Y, YAMASAKI H, et al. Adsorption of sulfur dioxide on Y-type zeolites[J]. Studies in Surface Science and Catalysis, 1997, 105: 1787-1793. |
42 | SHIN C S, NIIYAMA H. Oxidative sorption of SO2 by Cu/zeolite[J]. Journal of the Japan Petroleum Institute, 1988, 31(2): 147-153. |
43 | DATHE H, SEDLMAIR C, JENTYS A, et al. Adsorption of SO2 on different metal impregnated zeolites[J]. Studies in Surface Science and Catalysis, 2004, 154: 3003-3009. |
44 | MATHIEU Y, SOULARD M, PATARIN J, et al. Mesoporous materials for the removal of SO2 from gas streams[J]. Fuel Processing Technology, 2012, 99: 35-42. |
45 | DEBERRY D W, SLADEK K J. Rates of reaction of SO2 with metal oxides[J]. The Canadian Journal of Chemical Engineering, 1971, 49(6): 781-785. |
46 | LOWELL P S, SCHWITZGEBEL K, PARSONS T B, et al. Selection of metal oxides for removing SO2 from flue gas[J]. Industrial & Engineering Chemistry Process Design and Development, 1971, 10(3): 384-390. |
47 | WAQIF M, SAAD A M, BENSITEL M, et al. Comparative study of SO2 adsorption on metal oxides[J]. Journal of the Chemical Society, Faraday Transactions, 1992, 88(19): 2931. |
48 | PHAM X M, PHAM D L, HANH N T, et al. An initial evaluation on the adsorption of SO2 and NO2 over porous Fe3O4 nanoparticles synthesized by facile scalable method[J]. Journal of Chemistry, 2019, 2019: 1-7. |
49 | LUO Y G, LI D J. Experimental study of nanometer TiO2 for use as an adsorbent for SO2 removal[J]. Developments in Chemical Engineering and Mineral Processing, 2002, 10(3/4): 443-457. |
50 | RODRÍGUEZ J. Environmental catalysis and the chemistry of SO2 on oxide surfaces: fundamental principles for the cleavage of S—O bonds[J]. Ciencia, 2011, 9(2): 139-154. |
51 | BALTRUSAITIS J, JAYAWEERA P M, GRASSIAN V H. Sulfur dioxide adsorption on TiO2 nanoparticles: influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage[J]. The Journal of Physical Chemistry C, 2011, 115(2): 492-500. |
52 | ZHANG X Y, ZHUANG G S, CHEN J M, et al. Heterogeneous reactions of sulfur dioxide on typical mineral particles[J]. The Journal of Physical Chemistry B, 2006, 110(25): 12588-12596. |
53 | FU H B, WANG X, WU H B, et al. Heterogeneous uptake and oxidation of SO2 on iron oxides[J]. The Journal of Physical Chemistry C, 2007, 111(16): 6077-6085. |
54 | WANG H L, HAO R, GAO M P, et al. High temperature adsorption of SO2 on mixed oxides derived from CaAl hydrotalcite-like compounds[J]. Processes, 2021, 9(2): 325. |
55 | MA C B, YI H H, TANG X L, et al. Improving simultaneous removal efficiency of SO2 and NO x from flue gas by surface modification of MgO with organic component[J]. Journal of Cleaner Production, 2019, 230: 508-517. |
56 | ZHAO L, BI S N, PEI J S, et al. Adsorption performance of SO2 over ZnAl2O4 nanospheres[J]. Journal of Industrial and Engineering Chemistry, 2016, 41: 151-157. |
57 | ZHAO L, LI X Y, HAO C, et al. SO2 adsorption and transformation on calcined NiAl hydrotalcite-like compounds surfaces: an in situ FTIR and DFT study[J]. Applied Catalysis B: Environmental, 2012, 117/118: 339-345. |
58 | ZHAO L, LI X, QUAN X, et al. Effects of surface features on sulfur dioxide adsorption on calcined NiAl hydrotalcite-like compounds[J]. Environmental Science & Technology, 2011, 45(12): 5373-5379. |
59 | ZHAO L, LI X Y, ZHAO J. Correlation of structural and chemical characteristics with catalytic performance of hydrotalcite-based CuNiAl mixed oxides for SO2 abatement[J]. Chemical Engineering Journal, 2013, 223: 164-171. |
60 | WAQIF M, SAUR O, LAVALLEY J C, et al. Nature and mechanism of formation of sulfate species on copper/alumina sorbent-catalysts for sulfur dioxide removal[J]. The Journal of Physical Chemistry, 1991, 95(10): 4051-4058. |
61 | XIE G Y, LIU Z Y, ZHU Z P, et al. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia[J]. Applied Catalysis B: Environmental, 2003, 45(3): 213-221. |
62 | JEONG S M, KIM S D. Enhancement of the SO2 sorption capacity of CuO/γ-Al2O3 sorbent by an alkali-salt promoter[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5425-5431. |
63 | DATHE H, JENTYS A, HAIDER P, et al. On the trapping of SO x on CaO-Al2O3-based novel high capacity sorbents[J]. Physical Chemistry Chemical Physics, 2006, 8(13): 1601-1613. |
64 | KYLHAMMAR L, CARLSSON P A, INGELSTEN H H, et al. Regenerable ceria-based SO x traps for sulfur removal in lean exhausts[J]. Applied Catalysis B: Environmental, 2008, 84(1/2): 268-276. |
65 | SINHA A, SUZUKI K, TAKAHARA M, et al. Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification[J]. Angewandte Chemie International Edition, 2007, 46(16): 2891-2894. |
66 | DIAF A, GARCIA J L, BECKMAN E J. Thermally reversible polymeric sorbents for acid gases: CO2, SO2, and NO x [J]. Journal of Applied Polymer Science, 1994, 53(7): 857-875. |
67 | DIAF A, BECKMAN E J. Thermally reversible polymeric sorbents for acid gases, Ⅳ. Affinity tuning for the selective dry sorption of NO x [J]. Reactive Polymers, 1995, 25(1): 89-96. |
68 | KHATRI R A, CHUANG S S C, SOONG Y, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J]. Energy & Fuels, 2006, 20(4): 1514-1520. |
69 | BELMABKHOUT Y, SAYARI A. Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas[J]. Energy & Fuels, 2010, 24(9): 5273-5280. |
70 | LEE H J, LEE K I, KIM M, et al. Diamine-anchored polystyrene resins for reversible SO2 adsorption[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2012-2019. |
71 | WEI L, GAO Z, WANG Y. Integrated two-stage adsorption for selective removal of CO2 and SO2 by amine-functionalized SBA-15[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(4): 660-670. |
72 | YU X, HAO J L, XI Z C, et al. Investigation of low concentration SO2 adsorption performance on different amine-modified Merrifield resins[J]. Atmospheric Pollution Research, 2019, 10(2): 404-411. |
73 | SHAO J G, ZHANG J J, ZHANG X, et al. Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation[J]. Fuel, 2018, 224: 138-146. |
74 | XU X C, SONG C S, MILLER B G, et al. Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous "molecular basket” adsorbent[J]. Fuel Processing Technology, 2005, 86(14/15): 1457-1472. |
75 | UYANGA I J, IDEM R O. Studies of SO2- and O2- induced degradation of aqueous MEA during CO2 capture from power plant flue gas streams[J]. Industrial & Engineering Chemistry Research, 2007, 46(8): 2558-2566. |
76 | DATHE H, JENTYS A, LERCHER J A. Adsorption of SO2 on Ba impregnated metal organic framework materials[M]//Molecular sieves: from basic research to industrial applications, proceedings of the 3rd international zeolite symposium. Amsterdam: Elsevier, 2005: 995-1002. |
77 | FERNANDEZ C A, THALLAPALLY P K, MOTKURI R K, et al. Gas-induced expansion and contraction of a fluorinated metal-organic framework[J]. Crystal Growth & Design, 2010, 10(3): 1037-1039. |
78 | BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. PNAS, 2008, 105(33): 11623-11627. |
79 | TAN K, ZULUAGA S, WANG H, et al. Interaction of acid gases SO2 and NO2 with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M=Zn, Mg, Ni, Co)[J]. Chemistry of Materials, 2017, 29(10): 4227-4235. |
80 | HUNGERFORD J, BHATTACHARYYA S, TUMULURI U, et al. DMOF-1 as a representative MOF for SO2 adsorption in both humid and dry conditions[J]. The Journal of Physical Chemistry C, 2018, 122(41): 23493-23500. |
81 | GLOMB S, WOSCHKO D, MAKHLOUFI G, et al. Metal-organic frameworks with internal urea-functionalized dicarboxylate linkers for SO2 and NH3 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37419-37434. |
82 | ZHANG Y, CHEN Z H, LIU X, et al. Efficient SO2 removal using a microporous metal-organic framework with molecular sieving effect[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 874-882. |
[1] | 肖毅, 王兵兵, 于旭亮, 王鑫, 蔡汉友. 换热壁面碳酸钙吸附与脱水行为的分子动力学[J]. 化工进展, 2022, 41(8): 4077-4085. |
[2] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[3] | 吴玉帅, 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇, 马晓迅. 杂原子掺杂beta分子筛的烯烃环氧化催化性能[J]. 化工进展, 2022, 41(8): 4192-4203. |
[4] | 祖梅, 许海涛, 谢炜, 程海峰. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
[5] | 张雨珂, 刘倩, 段媛媛, 赵英杰, 崔阳, 史利娟, 李向远, 李剑川, 范海明, 易群. 基于MOFs材料的低碳烃(C1~C3)分离研究进展[J]. 化工进展, 2022, 41(8): 4288-4302. |
[6] | 金玮. 微孔碳材料修饰的隔膜用于高性能锂硫电池[J]. 化工进展, 2022, 41(8): 4386-4396. |
[7] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[8] | 单清雯, 张娟, 王亚娟, 刘文强. 聚合离子液体的合成及其吸附脱硫性能[J]. 化工进展, 2022, 41(8): 4571-4579. |
[9] | 生丽莎, 陈振乾. 多孔液体设计制备及性能分析研究进展[J]. 化工进展, 2022, 41(7): 3660-3675. |
[10] | 王胜楠, 陈康, 郑旭. 吸附式空气取水系统用吸湿材料研究进展[J]. 化工进展, 2022, 41(7): 3636-3647. |
[11] | 杨靖, 范议议, 王赛娣, 王福凯, 孟秀霞, 杨乃涛, 刘少敏. 二维层状双金属氢氧化物在去除磷酸盐中的应用[J]. 化工进展, 2022, 41(7): 3689-3706. |
[12] | 姜晓庆, 郭宇, 吴红梅. 2-吡啶甲醛功能化SBA-15介孔材料的制备及其对Cr(Ⅲ)离子的吸附[J]. 化工进展, 2022, 41(7): 3915-3924. |
[13] | 段正洋, 胡柠檬, 李天国. 黄原酸改性交联面包酵母的制备及对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2022, 41(7): 3925-3937. |
[14] | 汪潇, 金彪, 张小婷, 张建武, 王宇斌, 苑冬冬, 杨留栓. 氯盐体系下阳离子对脱硫石膏晶须水热结晶的影响及其机理[J]. 化工进展, 2022, 41(7): 3957-3965. |
[15] | 池成龙, 贾爱忠, 孙道来, 赵新强, 王延吉. 表面离子印迹聚合物金属离子吸附材料研究进展[J]. 化工进展, 2022, 41(7): 3758-3769. |
|