化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3263-3278.DOI: 10.16085/j.issn.1000-6613.2021-1614
唐朝春(), 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁
收稿日期:
2021-07-30
修回日期:
2021-10-28
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
唐朝春
作者简介:
唐朝春(1964—),男,硕士,教授,主要从事水处理理论与技术研究。E-mail:基金资助:
TANG Chaochun(), WANG Shunteng, HUANG Congxin, FENG Wentao, RUAN Yixuan, SHI Chunjing
Received:
2021-07-30
Revised:
2021-10-28
Online:
2022-06-10
Published:
2022-06-21
Contact:
TANG Chaochun
摘要:
介孔金属有机框架材料(介孔MOFs)相较于传统吸附剂具有孔径大、孔隙率可调、比表面积大、官能团丰富,便于功能化改性修饰等优点,可高效地吸附水体中重金属污染物。本文介绍介孔MOFs的特性、合成策略及四种合成介孔MOFs的方法,重点分析四种方法的介孔形成机理及其所面临的问题,并将四种合成方法的优劣进行了比较。详述介孔MOFs吸附去除水中重金属离子、类重金属阴离子以及放射性金属离子的研究进展;介绍了介孔MOFs在吸附去除重金属离子方面的可重复利用性;阐述介孔MOFs吸附去除水中重金属污染物的作用机理。对介孔MOFs成本高昂、合成条件苛刻、回收利用难等问题提出了优化方向,指出提高介孔MOFs的水稳定性、易回收利用、简便绿色合成技术以及痕量去除将是未来的研究方向。
中图分类号:
唐朝春, 王顺藤, 黄从新, 冯文涛, 阮以宣, 史纯菁. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278.
TANG Chaochun, WANG Shunteng, HUANG Congxin, FENG Wentao, RUAN Yixuan, SHI Chunjing. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278.
制备方法 | 制备要素 | 介孔形成机理 | 缺点 |
---|---|---|---|
配体延伸法 | 需要有一定结构强度的长配体 | 延长配体长度以扩大孔径范围 | 配体相互渗透影响材料结构;受配体柔性结构的影响,结构易坍塌 |
混合配体法 | 将两种或多种结构长度不同有机配体混合 | 长配体构建MOFs介孔道,短配体稳定框架结构 | 易形成单体共聚的混合物,不易检测其配位模式及骨架结构 |
软模板法 | 以表面活性剂或者嵌段共聚物,超临界CO2为结构导向剂 | 利用SDAs在反应体系中构建介孔架构进而形成介孔孔道 | 有机溶剂的大量使用增加成本同时污染环境 |
硬模板法 | 以纳米粒子或不稳定的组装体为牺牲模板 | 移除被引入的纳米粒子进而形成介孔孔道 | 硬模板剂不易去除 |
表1 几种介孔MOFs的制备方法比较
制备方法 | 制备要素 | 介孔形成机理 | 缺点 |
---|---|---|---|
配体延伸法 | 需要有一定结构强度的长配体 | 延长配体长度以扩大孔径范围 | 配体相互渗透影响材料结构;受配体柔性结构的影响,结构易坍塌 |
混合配体法 | 将两种或多种结构长度不同有机配体混合 | 长配体构建MOFs介孔道,短配体稳定框架结构 | 易形成单体共聚的混合物,不易检测其配位模式及骨架结构 |
软模板法 | 以表面活性剂或者嵌段共聚物,超临界CO2为结构导向剂 | 利用SDAs在反应体系中构建介孔架构进而形成介孔孔道 | 有机溶剂的大量使用增加成本同时污染环境 |
硬模板法 | 以纳米粒子或不稳定的组装体为牺牲模板 | 移除被引入的纳米粒子进而形成介孔孔道 | 硬模板剂不易去除 |
金属离子 | MOFs | 介孔大小/nm | 吸附量/mg·g-1 | 主要吸附机理 | 文献来源 |
---|---|---|---|---|---|
Hg2+ | PCN-221 | — | 277 | 卟啉簇中吡咯功能位点同Hg(Ⅱ)之间的配位作用 | |
Hg2+ | JUC-62 | 5.0833 | 836.7 | 静电作用以及配位作用 | |
Hg2+ | MOF-808 | 13.6~17.1 | 343.6 | 锆金属簇同Cr2O | |
Hg2+ | MOF-808(AO) | 3.5 | 383.8 | 配位作用及MOF-808(AO)中AO基团与Hg(Ⅱ)成键作用 | |
Pb2+ | melamine-MOFs | 2.0 | 205 | —NH2与Pb(Ⅱ)之间的配位作用 | |
Pb2+ | MOF-MA | 5.7 | 510 | 巯基配体和Pb(Ⅱ)之间的强亲和力 | |
Cr2O | BUT-39 | 2.0 | 215 | BUT-39中的锆金属簇同Cr2O | |
Cr2O | FJI-C11 | 2.4~3.1 | 551 | Cr2O | |
AsO | MIL-100(Fe) | 2.5~2.9 | 110 | 通过末端羟基的取代形成Fe—O—As配合物 | |
AsO | CoFe2O4@MIL-100(Fe) | 20.6 | 115 | 通过末端羟基的取代形成Fe—O—As配合物 | |
AsO | CoFe2O4@MIL-100(Fe) | 20.6 | 144 | 通过末端羟基的取代形成Fe—O—As配合物 | |
U6+ | MIL-100(Al) | 2.5 | 110 | 配位作用 |
表2 各种介孔MOFs吸附重金属污染物效能对比
金属离子 | MOFs | 介孔大小/nm | 吸附量/mg·g-1 | 主要吸附机理 | 文献来源 |
---|---|---|---|---|---|
Hg2+ | PCN-221 | — | 277 | 卟啉簇中吡咯功能位点同Hg(Ⅱ)之间的配位作用 | |
Hg2+ | JUC-62 | 5.0833 | 836.7 | 静电作用以及配位作用 | |
Hg2+ | MOF-808 | 13.6~17.1 | 343.6 | 锆金属簇同Cr2O | |
Hg2+ | MOF-808(AO) | 3.5 | 383.8 | 配位作用及MOF-808(AO)中AO基团与Hg(Ⅱ)成键作用 | |
Pb2+ | melamine-MOFs | 2.0 | 205 | —NH2与Pb(Ⅱ)之间的配位作用 | |
Pb2+ | MOF-MA | 5.7 | 510 | 巯基配体和Pb(Ⅱ)之间的强亲和力 | |
Cr2O | BUT-39 | 2.0 | 215 | BUT-39中的锆金属簇同Cr2O | |
Cr2O | FJI-C11 | 2.4~3.1 | 551 | Cr2O | |
AsO | MIL-100(Fe) | 2.5~2.9 | 110 | 通过末端羟基的取代形成Fe—O—As配合物 | |
AsO | CoFe2O4@MIL-100(Fe) | 20.6 | 115 | 通过末端羟基的取代形成Fe—O—As配合物 | |
AsO | CoFe2O4@MIL-100(Fe) | 20.6 | 144 | 通过末端羟基的取代形成Fe—O—As配合物 | |
U6+ | MIL-100(Al) | 2.5 | 110 | 配位作用 |
污染物 | 吸附剂 | 解吸剂 | 再生性能 | 文献来源 |
---|---|---|---|---|
Hg2+ | PCN-221 | 0.01mol/L硝酸溶液 | 75%(3次) | [ |
Hg2+ | NENU-401 | 乙腈和硫代乙二醇 | 90%(4次) | [ |
Pb2+ | AMCA-MIL-53(Al) | 0.1mol/L盐酸溶液、硫酸溶液、硝酸溶液 | 79.5%(1次) | [ |
Cr2O | FJI-C11 | 0.1mol/L盐酸溶液 | 93%(3次) | [ |
AsO | MIL-100(Fe) | 0.1mol/L盐酸溶液 | 86%(3次) | [ |
表3 各种介孔MOFs可重复利用性对比
污染物 | 吸附剂 | 解吸剂 | 再生性能 | 文献来源 |
---|---|---|---|---|
Hg2+ | PCN-221 | 0.01mol/L硝酸溶液 | 75%(3次) | [ |
Hg2+ | NENU-401 | 乙腈和硫代乙二醇 | 90%(4次) | [ |
Pb2+ | AMCA-MIL-53(Al) | 0.1mol/L盐酸溶液、硫酸溶液、硝酸溶液 | 79.5%(1次) | [ |
Cr2O | FJI-C11 | 0.1mol/L盐酸溶液 | 93%(3次) | [ |
AsO | MIL-100(Fe) | 0.1mol/L盐酸溶液 | 86%(3次) | [ |
1 | AZIMI A, AZARI A, REZAKAZEMI M, et al. Removal of heavy metals from industrial wastewaters: a review[J]. ChemBioEng Reviews, 2017, 4(1): 37-59. |
2 | XU S Z, LYU Y, ZENG X F, et al. ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater[J]. Chemical Engineering Journal, 2017, 323: 502-511. |
3 | 刘贤力, 侯昭胤. 重金属污染土壤回转窑协同处置和资源化利用[J]. 化工进展, 2020, 39(S1): 287-291. |
LIU Xianli, HOU Zhaoyin. Ccooperative disposal and resource utilization of heavy metal contaminated soil by rotary kiln[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 287-291. | |
4 | 张申平, 王艺蒙, 葛宇, 等. 基于孔材料的多元复合光催化剂降解抗生素[J]. 化工进展, 2021, 40(6): 3287-3299. |
ZHANG Shenping, WANG Yimeng, GE Yu, et al. Degradation of antibiotics by porous composite photocatalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3287-3299. | |
5 | 唐朝春, 敖永波, 刘占孟, 等. 矿化垃圾静态吸附处理模拟印染废水试验研究[J]. 华东交通大学学报, 2009, 26(3): 11-15. |
TANG Chaochun, AO Yongbo, LIU Zhanmeng, et al. Experimental study on the treatment of simulation dyeing wastewater by aged-refuse with static absorption[J]. Journal of East China Jiaotong University, 2009, 26(3): 11-15. | |
6 | 周立, 钟宏, 杨湘洪. 气液固三相流化床内氧化吸附组合联用处理含酚废水[J]. 化工进展, 2012, 31(2): 458-461, 472. |
ZHOU Li, ZHONG Hong, YANG Xianghong. Phenolic wastewater treatment by combination of oxidation combined with adsorption and in a gas-liquid-solid three-phase fluidized bed reactor[J]. Chemical Industry and Engineering Progress, 2012, 31(2): 458-461, 472. | |
7 | 徐艳艳, 刘伟, 舒婷, 等. 泡沫浮选耦合膜过滤回收有机废水中纳米TiO2光催化剂的工艺[J]. 化工进展, 2019, 38(10): 4773-4779. |
XU Yanyan, LIU Wei, SHU Ting, et al. Recovery of nano-sized TiO2 photocatalyst from its organic wastewater by using a technology of froth flotation coupled with ultrafiltration[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4773-4779. | |
8 | 钟静, 陆旗玮, 林森, 等. 锂铝层状吸附剂超低品位卤水提锂冲洗和解吸过程[J]. 化工进展, 2021, 40(8): 4638-4646. |
ZHONG Jing, LU Qiwei, LIN Sen, et al. Washing and desorption procedures research on granulated lithium aluminum layered double hydroxides for lithium recovery from low-grade brine[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4638-4646. | |
9 | 李红艳, 严铁尉, 崔建国, 等. 废菌渣活性炭的制备及对废水中硝基苯的吸附[J]. 化工进展, 2020, 39(11): 4702-4707. |
LI Hongyan, YAN Tiewei, CUI Jianguo, et al. Preparation of mushroom residue activated carbon and its adsorption mechanism of nitrobenzene in waste water[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4702-4707. | |
10 | PAN Z Z, ZHU X M, SATPATHY A, et al. Cr( Ⅵ ) adsorption on engineered iron oxide nanoparticles: exploring complexation processes and water chemistry[J]. Environmental Science & Technology, 2019, 53(20): 11913-11921. |
11 | ZHOU J M, CHEN S, LIU J, et al. Adsorption kinetic and species variation of arsenic for As(Ⅴ) removal by biologically mackinawite (FeS)[J]. Chemical Engineering Journal, 2018, 354: 237-244. |
12 | WU Y H, PANG H W, LIU Y, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: a review[J]. Environmental Pollution, 2019, 246: 608-620. |
13 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
14 | XUAN W M, ZHU C F, LIU Y, et al. Mesoporous metal-organic framework materials[J]. Chemical Society Reviews, 2012, 41(5): 1677-1695. |
15 | ZOU K Y, L I Z X. Controllable syntheses for MOF-derived materials[J]. Journal of Substance Abuse Treatment. 2018, 13(3): 287-288. |
16 | SHARMA A, KUMAR A, LI C N, et al. A cannabidiol-loaded Mg-gallate metal-organic framework-based potential therapeutic for glioblastomas[J]. Journal of Materials Chemistry B, 2021, 9(10): 2505-2514. |
17 | LU D F, WANG Z W, WANG F, et al. Phosphorescent calcium-based metal-organic framework with second-scale long afterglow[J]. Inorganic Chemistry, 2021, 60(14): 10075-10078. |
18 | ZHANG Z, LIU J, WANG Z, et al. Efficient capture of gaseous elemental mercury based on novel copper-based metal-organic frameworks[J]. Fuel, 2021, 289: 119791. |
19 | 杨建成, 王诗宁, 杨硕, 等. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(1): 463-476. |
YANG Jiancheng, WANG Shining, YANG Shuo, et al. Influence factors of VOCs adsorption on metal-organic frameworks: the reviews[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 463-476. | |
20 | JONGKIND M K, RIVERA-TORRENTE M, NIKOLOPOULOS N, et al. Influence of pore structure and metal-node geometry on the polymerization of ethylene over Cr-based metal-organic frameworks[J]. Chemistry—A European Journal, 2021, 27(18): 5769-5781. |
21 | OPANASENKO M, DHAKSHINAMOORTHY A, HWANG Y K, et al. Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the prins reaction: green synthesis of nopol[J]. ChemSusChem, 2013, 6(5): 865-871. |
22 | HAMON L, SERRE C, DEVIC T, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(Ⅴ), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature[J]. Journal of the American Chemical Society, 2009, 131(25): 8775-8777. |
23 | JEYASEELAN A, VISWANATHAN N. Design of amino-functionalized benzene-1,4-dicarboxylic acid-fabricated lanthanum-based metal-organic frameworks for defluoridation of water[J]. Journal of Chemical & Engineering Data, 2020, 65(11): 5328-5340. |
24 | LI Z, ZENG H C. Armored MOFs: enforcing soft microporous MOF nanocrystals with hard mesoporous silica[J]. Journal of the American Chemical Society, 2014, 136(15): 5631-5639. |
25 | LIU D X, ZOU D T, ZHU H L, et al. Mesoporous metal-organic frameworks: synthetic strategies and emerging applications[J]. Small, 2018, 14(37): 1801454. |
26 | GUAN H Y, LEBLANC R J, XIE S Y, et al. Recent progress in the syntheses of mesoporous metal-organic framework materials[J]. Coordination Chemistry Reviews, 2018, 369: 76-90. |
27 | GULCAY E, IACOMI P, KO Y, et al. Breaking the upper bound of siloxane uptake: metal-organic frameworks as an adsorbent platform[J]. Journal of Materials Chemistry A, 2021. DOI: 10.1039/d1ta02275j . |
28 | XIANG Z H, HU Z, CAO D P, et al. Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping[J]. Angewandte Chemie International Edition, 2011, 50(2): 491-494. |
29 | MURRAY L J, DINCĂ M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1294. |
30 | XU H, GAO J K, QIAN X F, et al. Metal-organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+ [J]. Journal of Materials Chemistry A, 2016, 4(28): 10900-10905. |
31 | LIU J Y, YU H J, WANG L, et al. Two-dimensional metal-organic frameworks nanosheets: synthesis strategies and applications[J]. Inorganica Chimica Acta, 2018, 483: 550-564. |
32 | WANG J, LI N, XU Y X, et al. Two-dimensional MOF and COF nanosheets: synthesis and applications in electrochemistry[J]. Chemistry - A European Journal, 2020, 26(29): 6402-6422. |
33 | WEN J, LI Y W, GAO J K. Two-dimensional metal-organic frameworks and derivatives for electrocatalysis[J]. Chemical Research in Chinese Universities, 2020, 36(4): 662-679. |
34 | 刘幸, 韩勇, 张亚如, 等. 介孔金属-有机框架(MesoMOFs)的合成研究进展[J]. 合成化学, 2019, 27(7): 568-575. |
LIU Xing, HAN Yong, ZHANG Yaru, et al. Research progress on synthesis of mesoporous metal-organic frameworks(MesoMOFs)[J]. Chinese Journal of Synthetic Chemistry, 2019, 27(7): 568-575. | |
35 | 段崇雄. 多级孔金属-有机骨架材料的制备、形成机制及吸附性能研究[D]. 广州: 华南理工大学, 2019. |
DUAN Chongxiong. Synthesis, formation mechanism and adsorption performance of hierarchically porous metal-organic frameworks[D]. Guangzhou: South China University of Technology, 2019. | |
36 | ZHAO D, TIMMONS D J, YUAN D Q, et al. Tuning the topology and functionality of metal–organic frameworks by ligand design[J]. Accounts of Chemical Research, 2011, 44(2): 123-133. |
37 | EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
38 | SONG L F, ZHANG J, SUN L X, et al. Mesoporous metal-organic frameworks: design and applications[J]. Energy & Environmental Science, 2012, 5(6): 7508. |
39 | GOMEZ-GUALDRON D A, GUTOV O V, KRUNGLEVICIUTE V, et al. Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane[J]. Chemistry of Materials, 2014, 26(19): 5632-5639. |
40 | LI P, MOON S Y, GUELTA M A, et al. Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis[J]. ACS Nano, 2016, 10(10): 9174-9182. |
41 | MONDLOCH J E, BURY W, FAIREN-JIMENEZ D, et al. Vapor-phase metalation by atomic layer deposition in a metal-organic framework[J]. Journal of the American Chemical Society, 2013, 135(28): 10294-10297. |
42 | XU W L, THAPA K B, JU Q, et al. Heterogeneous catalysts based on mesoporous metal-organic frameworks[J]. Coordination Chemistry Reviews, 2018, 373: 199-232. |
43 | CHEN X, ZHANG Q Y. Recent advances in mesoporous metal-organic frameworks[J]. Particuology, 2019, 45: 20-34. |
44 | KOH K, WONG-FOY A, MATZGER A. A crystalline mesoporous coordination copolymer with high microporosity[J]. Angewandte Chemie, 2008, 120(4): 689-692. |
45 | KLEIN N, SENKOVSKA I, GEDRICH K, et al. A mesoporous metal-organic framework[J]. Angewandte Chemie International Edition, 2009, 48(52): 9954-9957. |
46 | KLEIN N, SENKOVSKA I, BABURIN I A, et al. Route to a family of robust, non-interpenetrated metal-organic frameworks with pto-like topology[J]. Chemistry - A European Journal, 2011, 17(46): 13007-13016. |
47 | LIU B Y, LI Y Y, OH S C, et al. Fabrication of a hierarchically structured HKUST-1 by a mixed-ligand approach[J]. RSC Advances, 2016, 6(66): 61006-61012. |
48 | KIM S Y, KIM A R, YOON J W, et al. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake[J]. Chemical Engineering Journal, 2018, 335: 94-100. |
49 | QIU L G, XU T, LI Z Q, et al. Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity[J]. Angewandte Chemie International Edition, 2008, 47(49): 9487-9491. |
50 | ALIZADEH S, NEMATOLLAHI D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores[J]. Journal of the American Chemical Society, 2017, 139(13): 4753-4761. |
51 | YU H N, XU D D, XU Q. Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal-organic framework[J]. Chemical Communications, 2015, 51(67): 13197-13200. |
52 | DO X D, HOANG V T, KALIAGUINE S. MIL-53(Al) mesostructured metal-organic frameworks[J]. Microporous and Mesoporous Materials, 2011, 141(1/2/3): 135-139. |
53 | 李彦彦. 中微双孔金属—有机骨架材料HKUST-1的合成及表征[D]. 广州: 华南理工大学, 2016. |
LI Yanyan. Synthesis and characterization of micro-mesoporous metal-organic framework HKUST-1[D]. Guangzhou: South China University of Technology, 2016. | |
54 | SENKOVSKA I, KASKEL S. Ultrahigh porosity in mesoporous MOFs: promises and limitations[J]. Chemical Communications, 2014, 50(54): 7089. |
55 | CAO S, GODY G, ZHAO W, et al. Hierarchical bicontinuous porosity in metal–organic frameworks templated from functional block co-oligomer micelles[J]. Chemical Science, 2013, 4(9): 3573. |
56 | ZHANG W N, LIU Y Y, LU G, et al. Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure[J]. Advanced Materials, 2015, 27(18): 2923-2929. |
57 | KIM Y, YANG T, YUN G, et al. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs[J]. Angewandte Chemie International Edition, 2015, 54(45): 13273-13278. |
58 | HUANG H L, LI J R, WANG K K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks[J]. Nature Communications, 2015, 6: 8847. |
59 | SEYFI HASANKOLA Z, RAHIMI R, SHAYEGAN H, et al. Removal of Hg2+ heavy metal ion using a highly stable mesoporous porphyrinic zirconium metal-organic framework[J]. Inorganica Chimica Acta, 2020, 501: 119264. |
60 | WU Y Z, XU G H, WEI F D, et al. Determination of Hg (Ⅱ) in tea and mushroom samples based on metal-organic frameworks as solid phase extraction sorbents[J]. Microporous and Mesoporous Materials, 2016, 235: 204-210. |
61 | LIU Q F, ZHANG Q, LIU B R, et al. A new synthesis and adsorption mechanism of ZrO2 based metal-organic frames for efficient removal of mercury ions from aqueous solution[J]. Ceramics International, 2019, 45(12): 15720-15724. |
62 | BHATTACHARJEE S, LEE Y R, AHN W S. Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: a study on removal of Hg( Ⅱ ) from water and epoxidation of alkenes[J]. CrystEngComm, 2015, 17(12): 2575-2582. |
63 | REBELO F M, CALDAS E D. Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants[J]. Environmental Research, 2016, 151: 671-688. |
64 | DING L, LUO X B, SHAO P H, et al. Thiol-functionalized Zr-based metal-organic framework for capture of Hg( Ⅱ ) through a proton exchange reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8494-8502. |
65 | YIN N, WANG K, XIA Y A, et al. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb (Ⅱ)[J]. Desalination, 2018, 430: 120-127. |
66 | WANG C, LIN G, XI Y H, et al. Development of mercaptosuccinic anchored MOF through one-step preparation to enhance adsorption capacity and selectivity for Hg(Ⅱ) and Pb(Ⅱ)[J]. Journal of Molecular Liquids, 2020, 317: 113896. |
67 | ALQADAMI A A, KHAN M A, SIDDIQUI M R, et al. Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead ( Ⅱ ) from water[J]. Microporous and Mesoporous Materials, 2018, 261: 198-206. |
68 | RAO A, BANKAR A, KUMAR A R, et al. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles[J]. Journal of Contaminant Hydrology, 2013, 146: 63-73. |
69 | SIDIRAS D, POLITI D, BATZIAS F, et al. Efficient removal of hexavalent chromium from aqueous solutions using autohydrolyzed Scots Pine (Pinus Sylvestris) sawdust as adsorbent[J]. International Journal of Environmental Science and Technology, 2013, 10(6): 1337-1348. |
70 | SANDHU A, MASUDA H, ORAL A, et al. Room temperature magnetic imaging of magnetic storage media and garnet epilayers in the presence of external magnetic fields using a sub-micron GaAs SHPM[J]. Journal of Crystal Growth, 2001, 227/228: 899-905. |
71 | KHEDR S, SHOUMAN M N, FATHY N, et al. Effect of physical and chemical activation on the removal of hexavalent chromium ions using palm tree branches[J]. ISRN Environmental Chemistry, 2014, 2014: 1-10. |
72 | HE T, ZHANG Y Z, KONG X J, et al. Zr(Ⅳ)-based metal-organic framework with T-shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of Cr2O 7 2 - in water[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16650-16659. |
73 | 李茹霞, 钟文彬, 谢林华, 等. 金属有机框架材料对Cr(Ⅵ)离子的吸附去除研究进展[J]. 无机化学学报, 2021, 37(3): 385-400. |
LI Ruxia, ZHONG Wenbin, XIE Linhua, et al. Recent advances in adsorptive removal of Cr( Ⅵ ) ions by metal-organic frameworks[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(3): 385-400. | |
74 | ZOU Y H, LIANG J, HE C, et al. A mesoporous cationic metal-organic framework with a high density of positive charge for enhanced removal of dichromate from water[J]. Dalton Transactions, 2019, 48(20): 6680-6684. |
75 | LIU B, JIAN M P, WANG H, et al. Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 164-172. |
76 | CAI J H, WANG X Y, ZHOU Y, et al. Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe)[J]. Physical Chemistry Chemical Physics, 2016, 18(16): 10864-10867. |
77 | YANG J C, YIN X B. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity[J]. Scientific Reports, 2017, 7: 40955. |
78 | ZHAO X L, YU X Z, WANG X Y, et al. Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water[J]. Chemical Engineering Journal, 2021, 407: 127221. |
79 | HOWARTH A J, KATZ M J, WANG T C, et al. High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks[J]. Journal of the American Chemical Society, 2015, 137(23): 7488-7494. |
80 | FALAISE C, VOLKRINGER C, GIOVINE R, et al. Capture of actinides (Th4+, [UO2]2+) and surrogating lanthanide (Nd3+) in porous metal-organic framework MIL-100(Al) from water: selectivity and imaging of embedded nanoparticles[J]. Dalton Transactions, 2017, 46(36): 12010-12014. |
81 | YAN X Y, LI P X, SONG X M, et al. Recent progress in the removal of mercury ions from water based MOFs materials[J]. Coordination Chemistry Reviews, 2021, 443: 214034. |
82 | JIANG S Y, HE W W, LI S L, et al. Introduction of molecular building blocks to improve the stability of metal-organic frameworks for efficient mercury removal[J]. Inorganic Chemistry, 2018, 57(10): 6118-6123. |
83 | KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review[J]. Journal of Hazardous Materials, 2013, 244/245: 444-456. |
84 | WEN J, FANG Y, ZENG G M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade[J]. Chemosphere, 2018, 201: 627-643. |
85 | AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. Journal of Hazardous Materials, 2016, 301: 259-276. |
86 | LIU Z M, WU S H, JIA S Y, et al. Novel hematite nanorods and magnetite nanoparticles prepared from MIL-100(Fe) template for the removal of As(Ⅴ)[J]. Materials Letters, 2014, 132: 8-10. |
87 | WANG C H, LIU X L, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66[J]. Scientific Reports, 2015, 5: 16613. |
88 | ZHANG J M, XIONG Z H, LI C, et al. Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution[J]. Journal of Molecular Liquids, 2016, 221: 43-50. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[10] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[11] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[12] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[15] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |