1 |
马志宏, 葛莉. 环境测试设备中湿度传感器的研究与分析[J]. 装备环境工程, 2008, 5(4): 63-66.
|
|
MA Zhihong, GE Li. Study and analysis of hygrometer sensor in environmental test equipment[J]. Equipment Environmental Engineering, 2008, 5(4): 63-66.
|
2 |
赵晨. 基于改性碳纳米管的QCM型湿度传感器的研究[D]. 长春: 吉林大学, 2018.
|
|
ZHAO Chen. Study on QCM humidity sensor based on modified carbon nanotubes[D]. Changchun: Jilin University, 2018.
|
3 |
FANG H, LIN J B, HU Z X, et al. Cu(OH)2 nanowires/graphene oxide composites based QCM humidity sensor with fast-response for real-time respiration monitoring[J]. Sensors and Actuators B: Chemical, 2020, 304: 127313.
|
4 |
CHEN H N, ZHANG D Z, PAN Q N, et al. Highly sensitive QCM humidity sensor based on MOFs-derived SnO2/chitosan hybrid film[J]. IEEE Sensors Journal, 2021, 21(4): 4385-4390.
|
5 |
STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 2015, 10(5): 391-402.
|
6 |
ZHANG M, YU H, LYU M Q, et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr(3- x)Cl x films[J]. Chemical Communications, 2014, 50(79): 11727-11730.
|
7 |
UMARI P, MOSCONI E, DE ANGELIS F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications[J]. Scientific Reports, 2014, 4: 4467.
|
8 |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
|
9 |
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562(7726): 249-253.
|
10 |
PAN J, QUAN L N, ZHAO Y B, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28(39): 8718-8725.
|
11 |
LI G R, PRICE M, DESCHLER F. Research update: challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing[J]. APL Materials, 2016, 4(9): 091507.
|
22 |
王宗旗. 全无机铜基CsCuX3(X=Cl/Br)钙钛矿单晶材料的制备及性能研究[D]. 青岛: 青岛大学, 2019.
|
|
WANG Zongqi. Preparation and properties of all inorganic copper-based CsCuX3(X=Cl/Br) perovskite single crystal materials[D]. Qingdao: Qingdao University, 2019.
|
23 |
AAMIR M, SHER M, MALIK M A, et al. A facile approach for selective and sensitive detection of aqueous contamination in DMF by using perovskite material[J]. Materials Letters, 2016, 183: 135-138.
|
12 |
WANGYANG P H, GONG C H, RAO G F, et al. Recent advances in halide perovskite photodetectors based on different dimensional materials[J]. Advanced Optical Materials, 2018, 6(11): 1701302.
|
13 |
YOU X, WU J J, CHI Y W. Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell[J]. Analytical Chemistry, 2019, 91(8): 5058-5066.
|
24 |
KRISHNAMOORTHY T, DING H, YAN C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. Journal of Materials Chemistry A, 2015, 3(47): 23829-23832.
|
25 |
WENG Z H, QIN J J, UMAR A A, et al. Lead-Free Cs2BiAgBr6 double perovskite—based humidity sensor with superfast recovery time[J]. Advanced Functional Materials, 2019, 29(24): 1902234.
|
26 |
BAUSKAR D, KALE B B, PATIL P. Synthesis and humidity sensing properties of ZnSnO3 cubic crystallites[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 396-400.
|
27 |
ZHANG Y D, PAN X M, WANG Z, et al. Fast and highly sensitive humidity sensors based on NaNbO3 nanofibers[J]. RSC Advances, 2015, 5(26): 20453-20458.
|
28 |
GHASEMI M, ZHANG L, YUN J H, et al. Dual-ion-diffusion induced degradation in lead-free Cs2AgBiBr6 double perovskite solar cells[J]. Advanced Functional Materials, 2020, 30(42): 2002342.
|
29 |
CUI X P, JIANG K J, HUANG J H, et al. Cupric bromide hybrid perovskite heterojunction solar cells[J]. Synthetic Metals, 2015, 209: 247-250.
|
30 |
YE W, CAO Q, CHENG X F, et al. A lead-free Cs2PdBr6 perovskite-based humidity sensor for artificial fruit waxing detection[J]. Journal of Materials Chemistry A, 2020, 8(34): 17675-17682.
|
31 |
IMRAN Z, BATOOL S S, JAMIL H, et al. Excellent humidity sensing properties of cadmium titanate nanofibers[J]. Ceramics International, 2013, 39(1): 457-462.
|
14 |
CASANOVA-CHAFER J, GARCIA-ABOAL R, ATIENZAR P, et al. The role of anions and cations in the gas sensing mechanisms of graphene decorated with lead halide perovskite nanocrystals[J]. Chemical Communications, 2020, 56(63): 8956-8959.
|
15 |
MIN H, KIM M, LEE S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide[J]. Science, 2019, 366(6466): 749-753.
|
16 |
AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science, 2020, 370(6522): 1300-1309.
|
17 |
XIAO Z W, SONG Z N, YAN Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives[J]. Advanced Materials, 2019, 31(47): 1803792.
|
18 |
MA L, HAO F, STOUMPOS C C, et al. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films[J]. Journal of the American Chemical Society, 2016, 138(44): 14750-14755.
|
19 |
CHUNG I, LEE B, HE J Q, et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486-489.
|
20 |
STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137(21): 6804-6819.
|
21 |
HUANG Y Y, LIANG C Y, WU D F, et al. Surface ligand engineering for a lead-free Cs3Cu2Br5 microcrystal- based humidity sensor with a giant response[J]. The Journal of Physical Chemistry Letters, 2021, 12(13): 3401-3409.
|