化工进展 ›› 2025, Vol. 44 ›› Issue (S1): 422-433.DOI: 10.16085/j.issn.1000-6613.2025-0496
• 精细化工 • 上一篇
收稿日期:2025-04-02
修回日期:2025-05-09
出版日期:2025-10-25
发布日期:2025-11-24
通讯作者:
张育新
作者简介:张育新(1978—),男,教授,博士生导师,研究方向为岩藻黄素提取及医工交叉。E-mail:zhangyuxin@cqu.edu.cn。
基金资助:
ZHANG Yuxin1(
), DENG Ziyang2, WANG Can1, ZENG Dan3,4
Received:2025-04-02
Revised:2025-05-09
Online:2025-10-25
Published:2025-11-24
Contact:
ZHANG Yuxin
摘要:
岩藻黄素(fucoxanthin)是一种存在于藻类、海洋浮游生物和水生贝壳类等动植物中的色素,具有优异的抗氧化、抗肥胖、抗炎、抗癌等生物活性作用,在各个领域具有巨大潜力。本文介绍了岩藻黄素提取前预处理的方法,回顾了传统溶剂溶浸提取法,介绍了新型和辅助提取技术,并总结了提取过程的溶剂选择,提出了新型溶剂的应用建议,同时讲述了提纯工艺技术与制剂工艺,对岩藻黄素的工业潜力与应用前景进行了展望。目前,岩藻黄素的产业化生产受限于成本与环保的问题,且近年相关研究积累较少,但国内外有关岩藻黄素性能开发的研究逐渐增多,为驱动岩藻黄素产业化研究与开发提供动力。本文基于以上背景,认为岩藻黄素是一种具有开发潜力的物质,对岩藻黄素的提取技术与应用现状进行了总结,对其未来规模化产业化升级提供理论参考。
中图分类号:
张育新, 邓子洋, 王灿, 曾丹. 岩藻黄素的提取技术和应用现状[J]. 化工进展, 2025, 44(S1): 422-433.
ZHANG Yuxin, DENG Ziyang, WANG Can, ZENG Dan. Recent advances of extraction technology and application of fucoxanthin[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 422-433.
| 技术类型 | 提取率/mg·g-1 | 溶剂用量 | 能耗 | 环保性 | 参考文献 |
|---|---|---|---|---|---|
| 传统溶剂浸取 | 1.5~2.5 | 高 | 高 | 中等(溶剂残留) | [ |
| 超声辅助提取 | 2.0~2.8 | 中 | 中 | 高(溶剂需求量低) | [ |
| 超临界CO₂萃取 | 8.0~12.0 | 低 | 中高 | 高(无毒) | [ |
| 电技术辅助提取 | 10.0~16.0 | 低 | 低 | 高(无溶剂) | [ |
表1 岩藻黄素主流提取技术综合性能对比
| 技术类型 | 提取率/mg·g-1 | 溶剂用量 | 能耗 | 环保性 | 参考文献 |
|---|---|---|---|---|---|
| 传统溶剂浸取 | 1.5~2.5 | 高 | 高 | 中等(溶剂残留) | [ |
| 超声辅助提取 | 2.0~2.8 | 中 | 中 | 高(溶剂需求量低) | [ |
| 超临界CO₂萃取 | 8.0~12.0 | 低 | 中高 | 高(无毒) | [ |
| 电技术辅助提取 | 10.0~16.0 | 低 | 低 | 高(无溶剂) | [ |
| [1] | BUTLER Thomas, KAPOORE Rahul Vijay, VAIDYANATHAN Seetharaman. Phaeodactylum tricornutum: A diatom cell factory[J]. Trends in Biotechnology, 2020, 38(6): 606-622. |
| [2] | XIA Song, WANG Ke, WAN Linglin, et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita [J]. Marine Drugs, 2013, 11(7): 2667-2681. |
| [3] | FUNG Adah, HAMID Nazimah, LU Jun. Fucoxanthin content and antioxidant properties of Undaria pinnatifida [J]. Food Chemistry, 2013, 136(2): 1055-1062. |
| [4] | 彭红, 黄品哲, 宋永贵, 等. 海藻羊栖菜化学成分全谱分析及其体外抗神经炎症活性研究[J]. 中国药房, 2022, 33(7): 800-807, 812. |
| PENG Hong, HUANG Pinzhe, SONG Yonggui, et al. Full spectrum analysis of chemical constituents of Sargassum fusiforme and its in vitro anti-neuroinflammatory activity[J]. China Pharmacy, 2022, 33(7): 800-807, 812. | |
| [5] | 李凤娇, 顾雯, 俞捷, 等. 线粒体自噬机制、相关疾病及中药对其调节作用的研究进展[J]. 中国药房, 2018, 29(20): 2865-2871. |
| LI Fengjiao, GU Wen, YU Jie, et al. Research progress on the mechanism of mitochondrial autophagy, related diseases and the regulatory effect of traditional Chinese medicine on it[J]. China Pharmacy, 2018, 29(20): 2865-2871. | |
| [6] | OLIYAEI Najmeh, ZEKRI Saghar, IRAJI Aida, et al. Health benefits of algae and marine-derived bioactive metabolites for modulating ulcerative colitis symptoms[J]. Journal of Functional Foods, 2025, 125: 106690. |
| [7] | 吴素煌, 岳洋, 王晶, 等. 海带中岩藻黄素异构体的分离纯化及其体外抗肿瘤活性研究[J]. 海洋科学, 2019, 43(1): 67-74. |
| WU Suhuang, YUE Yang, WANG Jing, et al. Isolation, identification and the in vitro anti-breast cancer effects of fucoxanthin stereoisomers from laminaria japonica[J]. Marine Sciences, 2019, 43(1): 67-74. | |
| [8] | 潘东进, 李嘉英, 梁莉芬, 等. 岩藻黄素降脂活性及其作用机制研究进展[J]. 广西科学, 2021, 28(6): 588-598. |
| PAN Dongjin, LI Jiaying, LIANG Lifen, et al. Research progress on lipid lowering activity and mechanism of fucoxanthin[J]. Guangxi Sciences, 2021, 28(6): 588-598. | |
| [9] | 彭娟, 邓夏青, 敖钰舒, 等. 岩藻黄素抗肥胖和抗糖尿病活性研究进展[J]. 现代食品科技, 2015, 31(9): 314-325, 313. |
| PENG Juan, DENG Xiaqing, AO Yusu, et al. Anti-obesity and anti-diabetic effects of fucoxanthin[J]. Modern Food Science and Technology, 2015, 31(9): 314-325, 313. | |
| [10] | KAPOORE Rahul Vijay, BUTLER Thomas O, PANDHAL Jagroop, et al. Microwave-assisted extraction for microalgae: From biofuels to biorefinery[J]. Biology, 2018, 7(1): 18. |
| [11] | PAJOT Anne, HUYNH Gia Hao, PICOT Laurent, et al. Fucoxanthin from algae to human, an extraordinary bioresource: Insights and advances in up and downstream processes[J]. Marine Drugs, 2022, 20(4): 222. |
| [12] | Pia STEINRÜCKEN, PRESTEGARD Siv Kristin, DE VREE Jeroen Hendrik, et al. Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions[J]. Algal Research, 2018, 30: 11-22. |
| [13] | ISHIKA Tasneema, MOHEIMANI Navid R, BAHRI Parisa A, et al. Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity[J]. Algal Research, 2017, 28: 66-73. |
| [14] | MOHAMADNIA Sonia, TAVAKOLI Omid, FARAMARZI Mohammad ALI. Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea [J]. Aquaculture, 2021, 533: 736074. |
| [15] | WANG Song, SIRBU Diana, THOMSEN Laurenz, et al. Comparative lipidomic studies of Scenedesmus sp. (Chlorophyceae) and Cylindrotheca closterium (Bacillariophyceae) reveal their differences in lipid production under nitrogen starvation[J]. Journal of Phycology, 2019, 55(6): 1246-1257. |
| [16] | 周小叶, 蔡路昀. 岩藻黄素产业化技术研究进展[J]. 现代食品科技, 2024, 40(3): 361-372. |
| ZHOU Xiaoye, CAI Luyun. Research progress on industrializable technologies for fucoxanthin[J]. Modern Food Science and Technology, 2024, 40(3): 361-372. | |
| [17] | 袁传军. 硅藻的特性及其在多种学科领域中的应用[J]. 化学教学, 2022(11): 92-97. |
| YUAN Chuanjun. Features of diatomite and its application in numerous subject areas[J]. Education in Chemistry, 2022(11): 92-97. | |
| [18] | GONÇALVES DE OLIVEIRA-JÚNIOR Raimundo, GROUGNET Raphaël, BODET Pierre-Edouard, et al. Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells[J]. Algal Research, 2020, 51: 102035. |
| [19] | SUN Zheng, WANG Xiaofei, LIU Jin. Screening of Isochrysis strains for simultaneous production of docosahexaenoic acid and fucoxanthin[J]. Algal Research, 2019, 41: 101545. |
| [20] | KIM Sang Min, JUNG Yu-Jin, KWON Oh-Nam, et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum [J]. Applied Biochemistry and Biotechnology, 2012, 166(7): 1843-1855. |
| [21] | ASLANBAY GULER Bahar, DENIZ Irem, DEMIREL Zeliha, et al. A novel subcritical fucoxanthin extraction with a biorefinery approach[J]. Biochemical Engineering Journal, 2020, 153: 107403. |
| [22] | SIAHAAN Evi Amelia, CHUN Byung Soo.Innovative alternative technology for fucoxanthin recovery[M]. New York: John Wiley & Sons Inc., 2020: 3213-3227. |
| [23] | DEL PILAR SÁNCHEZ-CAMARGO Andrea, PLEITE Natalia, HERRERO Miguel, et al. New approaches for the selective extraction of bioactive compounds employing bio-based solvents and pressurized green processes[J]. The Journal of Supercritical Fluids, 2017, 128: 112-120. |
| [24] | 陈建楠, 陈由强, 薛婷. 球等鞭金藻中岩藻黄素的提取及其纯化工艺研究[J]. 福建农业科技, 2020, 51(4): 28-37. |
| CHEN Jiannan, CHEN Youqiang, XUE Ting. Study on the extraction and purification process of fucoxanthin in isochrysis galbana[J]. Fujian Agricultural Science and Technology, 2020, 51(4): 28-37. | |
| [25] | 韩典峰, 邹荣婕, 宫向红, 等. 响应面法优化铜藻中岩藻黄素的提取工艺[J]. 食品安全质量检测学报, 2019, 10(8): 2225-2231. |
| HAN Dianfeng, ZOU Rongjie, GONG Xianghong, et al. Optimization of extraction process for fucoxanthin from Sargassum horneri by response surface methodology[J]. Journal of Food Safety & Quality, 2019, 10(8): 2225-2231. | |
| [26] | 李红艳, 刘天红, 姜晓东, 等. 超声辅助乙醇提取铜藻中岩藻黄素的工艺研究[J]. 中国农业科技导报, 2018, 20(9): 146-153. |
| LI Hongyan, LIU Tianhong, JIANG Xiaodong, et al. Optimization of ultrasonic enhanced extraction of fucoxanthin from Sargassum horneri[J]. Journal of Agricultural Science and Technology, 2018, 20(9): 146-153. | |
| [27] | Anxo CARREIRA-CASAIS, OTERO Paz, Pascual GARCIA-PEREZ, et al. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae[J]. International Journal of Environmental Research and Public Health, 2021, 18(17): 9153. |
| [28] | ZHAO Guili, CHEN Xue, WANG Lei, et al. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation[J]. Bioresource Technology, 2013, 128: 337-344. |
| [29] | MAHALI Mahmood, SIBI G. Extraction methods and functional properties of protein from Arthospira platensis for bioavailability of algal proteins[J]. International Journal of Pharmacy and Chemistry, 2019, 5(2): 20-25. |
| [30] | Valerie C A ORR, PLECHKOVA Natalia V, SEDDON Kenneth R, et al. Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(2): 591-600. |
| [31] | 丁建姿, 李长青, 姬广磊, 等. 岩藻黄质的提取及其稳定性初探[J]. 食品工业, 2021, 42(11): 178-183. |
| DING Jianzi, LI Changqing, JI Guanglei, et al. The extraction and preliminary exploration on the stability of fucoxanthin[J]. The Food Industry, 2021, 42(11): 178-183. | |
| [32] | VIGNESH Nagamalai Sakthi, KIRUTHIKA Murugan, POTHIARAJ Govindan, et al. Uncovering the nutraceutical and biorefinery applications of two different marine macroalgae Sargassum polycystum and Rosenvingea intricata [J]. Biocatalysis and Agricultural Biotechnology, 2024, 60: 103274. |
| [33] | Marco GARCIA-VAQUERO, UMMAT Viruja, TIWARI Brijesh, et al. Exploring ultrasound, microwave and ultrasound-microwave assisted extraction technologies to increase the extraction of bioactive compounds and antioxidants from brown macroalgae[J]. Marine Drugs, 2020, 18(3): 172. |
| [34] | 李翠丽, 王炜, 张英, 等. 中药多糖提取、分离纯化方法的研究进展[J]. 中国药房, 2016, 27(19): 2700-2703. |
| LI Cuili, WANG Wei, ZHANG Ying, et al. Research progress on extraction, separation and purification methods of polysaccharide from traditional Chinese medicine[J]. China Pharmacy, 2016, 27(19): 2700-2703. | |
| [35] | 王玮, 李苑新. 提取新技术用于黄酮类化合物的研究进展[J]. 中国药房, 2014, 25(31): 2958-2960. |
| WANG Wei, LI Yuanxin. Research progress of new extraction technology for flavonoids[J]. China Pharmacy, 2014, 25(31): 2958-2960. | |
| [36] | ZHENG Lingli, WEN Guan, YUAN Minyong, et al. Ultrasound-assisted extraction of total flavonoids from corn silk and their antioxidant activity[J]. Journal of Chemistry, 2016, 2016(1): 8768130. |
| [37] | RODRÍGUEZ SEOANE Paula, Noelia FLÓREZ-FERNÁNDEZ, CONDE PIÑEIRO Enma, et al. Microwave-assisted water extraction[M]//Water extraction of bioactive compounds. Amsterdam: Elsevier, 2017: 163-198. |
| [38] | 王军良, 杨丽丽, 林春绵, 等. 超临界二氧化碳化学反应研究进展[J]. 化工进展, 2021, 40(8): 4127-4134. |
| WANG Junliang, YANG Lili, LIN Chunmian, et al. Research progress of supercritical carbon dioxide in chemical reactions[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4127-4134. | |
| [39] | 钱国平, 杨亦文, 吴彩娟, 等. 超临界CO2从黄花蒿中提取青蒿素的研究[J]. 化工进展, 2005, 24(3): 286-290, 302. |
| QIAN Guoping, YANG Yiwen, WU Caijuan, et al. Supercritical CO2 extraction of artemisinin from Artemisia annua L [J]. Chemical Industry and Engineering Progress, 2005, 24(3): 286-290, 302. | |
| [40] | ASHOKKUMAR Veeramuthu, FLORA G, SEVANAN Murugan, et al. Technological advances in the production of carotenoids and their applications—A critical review[J]. Bioresource Technology, 2023, 367: 128215. |
| [41] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
| ZHANG Yuxin, WANG Can, SHU Wenxiang. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 944-956. | |
| [42] | CONDE Enma, MOURE Andrés, Herminia DOMÍNGUEZ. Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum [J]. Journal of Applied Phycology, 2015, 27(2): 957-964. |
| [43] | MIYASHITA Kazuo, BEPPU Fumiaki, HOSOKAWA Masashi, et al. Bioactive significance of fucoxanthin and its effective extraction[J]. Biocatalysis and Agricultural Biotechnology, 2020, 26: 101639. |
| [44] | JASWIR I, NOVIENDRI D, BAKHTIAR M, et al. Optimization of essential oil and fucoxanthin extraction from Sargassum binderi by supercritical carbon dioxide (SC-CO2) extraction with ethanol as co-solvent using response surface methodology (RSM)[J]. International Food Research Journal, 2017, 24: 514-521. |
| [45] | David VICENTE-ZURDO, Esther GÓMEZ-MEJÍA, Sonia MORANTE-ZARCERO, et al. Analytical strategies for green extraction, characterization, and bioactive evaluation of polyphenols, tocopherols, carotenoids, and fatty acids in agri-food bio-residues[J]. Molecules, 2025, 30(6): 1326. |
| [46] | RUIZ-DOMÍNGUEZ Mari Carmen, SALINAS Francisca, MEDINA Elena, et al. Supercritical fluid extraction of fucoxanthin from the diatom Phaeodactylum tricornutum and biogas production through anaerobic digestion[J]. Marine Drugs, 2022, 20(2): 127. |
| [47] | GONDO Thamani Freedom, Madeleine JÖNSSON, KARLSSON Eva Nordberg, et al. Extractability, selectivity, and comprehensiveness in supercritical fluid extraction of seaweed using ternary mixtures of carbon dioxide, ethanol, and water[J]. Journal of Chromatography A, 2023, 1706: 464267. |
| [48] | HONDA Masaki, MURAKAMI Kazuya, TAKASU Soo, et al. Extraction of fucoxanthin isomers from the edible brown seaweed Undaria pinnatifida using supercritical CO2: Effects of extraction conditions on isomerization and recovery of fucoxanthin[J]. Journal of Oleo Science, 2022, 71(8): 1097-1106. |
| [49] | NAKAZAWA Y, SASHIMA T, HOSOKAWA M, et al. Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines[J]. Journal of Functional Foods, 2009, 1(1): 88-97. |
| [50] | POLAK A, TAREK M, TOMŠIČ M, et al. Electroporation of archaeal lipid membranes using MD simulations[J]. Bioelectrochemistry, 2014, 100: 18-26. |
| [51] | ROCHA Cristina M R, GENISHEVA Zlatina, Pedro FERREIRA-SANTOS, et al. Electric field-based technologies for valorization of bioresources[J]. Bioresource Technology, 2018, 254: 325-339. |
| [52] | Ragnhildur EINARSDÓTTIR, ÞÓRARINSDÓTTIR Kristín Anna, AÐALBJÖRNSSON Björn Viðar, et al. Extraction of bioactive compounds from Alaria esculenta with pulsed electric field[J]. Journal of Applied Phycology, 2022, 34(1): 597-608. |
| [53] | KHOO Kuan Shiong, Chien Wei OOI, CHEW Kit Wayne, et al. Extraction of fucoxanthin from Chaetoceros calcitrans by electropermeabilization-assisted liquid biphasic flotation system[J]. Journal of Chromatography A, 2022, 1668: 462915. |
| [54] | JAESCHKE Débora Pez, MERLO Eduardo Antônio, MERCALI Giovana Domeneghini, et al. The effect of temperature and moderate electric field pre-treatment on carotenoid extraction from Heterochlorella luteoviridis [J]. International Journal of Food Science & Technology, 2019, 54(2): 396-402. |
| [55] | GOLBERG Alexander, SACK Martin, TEISSIE Justin, et al. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development[J]. Biotechnology for Biofuels, 2016, 9(1): 94. |
| [56] | KOTNIK Tadej, REMS Lea, TAREK Mounir, et al. Membrane electroporation and electropermeabilization: Mechanisms and models[J]. Annual Review of Biophysics, 2019, 48: 63-91. |
| [57] | TERAMUKAI Kazuyoshi, KAKUI Shusuke, BEPPU Fumiaki, et al. Effective extraction of carotenoids from brown seaweeds and vegetable leaves with edible oils[J]. Innovative Food Science & Emerging Technologies, 2020, 60: 102302. |
| [58] | SINGH Kuldeep, KRISHNA PAIDI Murali, KULSHRESTHA Akshay, et al. Deep eutectic solvents based biorefining of value-added chemicals from the diatom Thalassiosira andamanica at room temperature[J]. Separation and Purification Technology, 2022, 298: 121636. |
| [59] | CHOI Sun-A, You-Kwan OH, LEE Jiye, et al. High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures[J]. Bioresource Technology, 2019, 274: 120-126. |
| [60] | KHOO Kuan Shiong, Chien Wei OOI, CHEW Kit Wayne, et al. Bioprocessing of Chaetoceros calcitrans for the recovery of fucoxanthin using CO2-based alkyl carbamate ionic liquids[J]. Bioresource Technology, 2021, 322: 124520. |
| [61] | Bárbara M C VAZ, MARTINS Margarida, DE SOUZA MESQUITA Leonardo M, et al. Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction processes[J]. Chemical Engineering Journal, 2022, 428: 131073. |
| [62] | CVJETKO BUBALO Marina, Senka VIDOVIĆ, RADOJČIĆ REDOVNIKOVIĆ Ivana, et al. New perspective in extraction of plant biologically active compounds by green solvents[J]. Food and Bioproducts Processing, 2018, 109: 52-73. |
| [63] | FOURMENTIN Sophie, GOMES Margarida Costa, LICHTFOUSE Eric. Deep eutectic solvents for medicine, gas solubilization and extraction of natural substances[M]. Cham: Springer, 2021. |
| [64] | FU Xizhe, WANG Di, BELWAL Tarun, et al. Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg[J]. Food Chemistry, 2021, 355: 129577. |
| [65] | OBLUCHINSKAYA Ekaterina D, POZHARITSKAYA Olga N, ZAKHAROVA Lyubov V, et al. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus [J]. Molecules, 2021, 26(14): 4198. |
| [66] | RODRIGUES Liliana A, PEREIRA Carolina V, LEONARDO Inês C, et al. Terpene-based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(5): 2246-2259. |
| [67] | MATTONAI Marco, MASSAI Pietro, RIBECHINI Erika. Sustainable microwave-assisted eutectic solvent extraction of polyphenols from vine pruning residues[J]. Microchemical Journal, 2024, 197: 109816. |
| [68] | WILS Laura, Charlotte LEMAN-LOUBIÈRE, BELLIN Nicolas, et al. Natural deep eutectic solvent formulations for spirulina: Preparation, intensification, and skin impact[J]. Algal Research, 2021, 56: 102317. |
| [69] | Kumiko IIO, OKADA Yumika, ISHIKURA Masaharu. Single and 13-week oral toxicity study of fucoxanthin oil from microalgae in rats[J]. Shokuhin Eiseigaku Zasshi Journal of the Food Hygienic Society of Japan, 2011, 52(3): 183-189. |
| [70] | ALGHAZWI Mousa, SMID Scott, MUSGRAVE Ian, et al. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation[J]. Neurochemistry International, 2019, 124: 215-224. |
| [71] | 何志敏, 王志详, 余国琮. 制备型高效液相色谱分离技术及其在生化工程中的应用[J]. 化工进展, 1992, 11(3): 28-33. |
| HE Zhimin, WANG Zhixiang, YU Guocong. Preparative high performance liquid chromatography separation technology and its application in biochemical engineering[J]. Chemical Industry and Engineering Progress, 1992, 11(3): 28-33. | |
| [72] | 陈萍, 陈晓青, 肖建波. 反相高效液相色谱法测定meso-四苯基卟啉钴的纯度[J]. 化工进展, 2005, 24(4): 449-451. |
| CHEN Ping, CHEN Xiaoqing, XIAO Jianbo. Determination of meso-tetraphenyl porphine cobalt in reversed-phase high performance liquid chromatography[J]. Chemical Industry and Engineering Progress, 2005, 24(4): 449-451. | |
| [73] | 张旦亚, 杨吉兴. 高效液相色谱分类及工作原理[J]. 化工管理, 2017(20):113. |
| ZHANG Danya, YANG Jixing. Classification and working principle of high performance liquid chromatography[J]. Chemical Engineering Management, 2017(20):113. | |
| [74] | GALLEGO Rocío, TARDIF Charles, PARREIRA Celina, et al. Simultaneous extraction and purification of fucoxanthin from Tisochrysis lutea microalgae using compressed fluids[J]. Journal of Separation Science, 2020, 43(9/10): 1967-1977. |
| [75] | TOKAREK Wiktor, LISTWAN Stanisław, PAGACZ Joanna, et al. Column chromatography as a useful step in purification of diatom pigments[J]. Acta Biochimica Polonica, 2016, 63(3): 443-447. |
| [76] | ZHANG Yiping, FANG Hua, XIE Quanling, et al. Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers[J]. Molecules, 2014, 19(2): 2100-2113. |
| [77] | WIBOWO Arif Agung, Heriyanto, SHIOI Yuzo, et al. Simultaneous purification of fucoxanthin isomers from brown seaweeds by open-column and high-performance liquid chromatography[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2022, 1193: 123166. |
| [78] | ZHAO Xinjie, GAO Liwei, ZHAO Xiangzhong. Rapid purification of fucoxanthin from Phaeodactylum tricornutum [J]. Molecules, 2022, 27(10): 3189. |
| [79] | BIGAGLI Elisabetta, CINCI Lorenzo, NICCOLAI Alberto, et al. Preliminary data on the dietary safety, tolerability and effects on lipid metabolism of the marine microalga Tisochrysis lutea [J]. Algal Research, 2018, 34: 244-249. |
| [80] | RAJAURIA Gaurav, Nissreen ABU-GHANNAM. Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach[J]. International Journal of Analytical Chemistry, 2013, 2013(1): 802573. |
| [81] | 马国艳, 魏雯婧, 李洋, 等. 微胶囊制备技术与应用研究进展[J]. 高分子通报, 2025, 38(5): 718-726. |
| MA Guoyan, WEI Wenjin, LI Yanget al. Research progress on preparation technology and application of microcapsules[J]. Polymer Bulletin, 2025, 38(5): 718-726. | |
| [82] | 胡雨卿, 余元善, 宋贤良, 等. 多酚对类胡萝卜素抗氧化性和稳定性的影响[J]. 食品工业科技, 2023, 44(19): 57-67. |
| HU Yuqing, YU Yuanshan, SONG Xianliang, et al. Effect of polyphenols on antioxidant properties and stabilities of carotenoids[J]. Science and Technology of Food Industry, 2023, 44(19): 57-67. | |
| [83] | KHAW Yam Sim, YUSOFF Fatimah Md, TAN Hui teng, et al. The critical studies of fucoxanthin research trends from 1928 to June 2021: A bibliometric review[J]. Marine Drugs, 2021, 19(11): 606. |
| [84] | BUDIARSO Fitri Santy, LEONG Yoong Kit, CHANG Jui-Jen, et al. Current advances in microalgae-based fucoxanthin production and downstream processes[J]. Bioresource Technology, 2025, 428: 132455. |
| [85] | Su Chern FOO, YUSOFF Fatimah Md, ISMAIL Maznah, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents[J]. Journal of Biotechnology, 2017, 241: 175-183. |
| [86] | MCCLURE Dale D, LUIZ Audrey, GERBER Blandine, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum [J]. Algal Research, 2018, 29: 41-48. |
| [87] | PATEL Anil Kumar, ALBARICO Frank Paolo Jay B, PERUMAL Pitchurajan Krishna, et al. Algae as an emerging source of bioactive pigments[J]. Bioresource Technology, 2022, 351: 126910. |
| [1] | 刘见华, 袁振军, 常欣, 赵喜哲, 万烨, 余学功, 杨德仁. 硅基前体在先进集成电路制造中的应用与技术进展[J]. 化工进展, 2025, 44(9): 5255-5264. |
| [2] | 李白茹, 方志敏, 王爱丽, 罗龙, 张罗正, 李绿洲, 丁建宁. 钙钛矿太阳能电池研究进展[J]. 化工进展, 2025, 44(5): 2598-2624. |
| [3] | 乔凯, 张震宇, 马会霞, 傅杰, 周峰. 生物基呋喃二甲酸关键技术路线和产业发展现状[J]. 化工进展, 2025, 44(5): 2577-2586. |
| [4] | 郭沛, 崔灿灿, 孔德洁, 黄晟. “双碳”背景下固态锂电池用硫化物固态电解质的发展趋势[J]. 化工进展, 2024, 43(9): 5193-5206. |
| [5] | 刘东国, 吴云青, 段学辉. 联合生物加工产纤维素乙醇中真菌的开发与应用[J]. 化工进展, 2018, 37(09): 3568-3576. |
| [6] | 刘博洋, 周华兰, 夏峰峰, 宋金文, 禹耕之, 王鸣. 废塑料制油技术研究及产业化进展[J]. 化工进展, 2017, 36(S1): 416-427. |
| [7] | 郑建勇,钟明强,冯 杰. 基于超疏水原理的自清洁表面研究进展及产业化状况 [J]. 化工进展, 2010, 29(2): 281-. |
| [8] | 王辅臣,于广锁,龚 欣,刘海峰,王亦飞,梁钦峰. 大型煤气化技术的研究与发展 [J]. 化工进展, 2009, 28(2): 173-. |
| [9] | 徐朝辉,童晋荣,万端极 . 超声提取-膜过滤-超临界萃取联合技术提取青蒿素 [J]. 化工进展, 2006, 25(12): 1447-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |