化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3305-3323.DOI: 10.16085/j.issn.1000-6613.2025-0063
• 特约评述 • 上一篇
刘东阳(
), 何福鹏(
), 邱伟, 周天航(
), 赵亮, 徐春明
收稿日期:2025-01-10
修回日期:2025-05-17
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
周天航
作者简介:刘东阳(1993—),男,博士,研究方向为油气加工工艺与工程。E-mail:liudongyang@cup.edu.cn基金资助:
LIU Dongyang(
), HE Fupeng(
), QIU Wei, ZHOU Tianhang(
), ZHAO Liang, XU Chunming
Received:2025-01-10
Revised:2025-05-17
Online:2025-06-25
Published:2025-07-08
Contact:
ZHOU Tianhang
摘要:
能源化工是支撑国民经济发展和保障国家战略安全的重要领域,正面临着低碳化、智慧化和可持续发展的深刻变革。本文系统综述了传统能源低碳化与低碳能源实用化的研究进展及关键技术。在传统能源的低碳化方面,通过传统能源分子精准表征与转化过程模型化,推动高效工艺的开发以降低碳排放,并结合定向催化转化技术实现传统化石能源的绿色转型。在低碳能源的实用化方面,探讨了长时大规模储能技术的进展以及应用,以提高可再生能源的利用率和支撑低碳能源系统的构建。以液流电池为例,探索了智慧化技术在储能性能优化中的应用。同时,新催化反应机理与基于电磁供能及多物理场耦合机制分析的工艺装备开发技术,推动了传统能源低碳化与智慧化的深度融合。最后,本文展望了“能源化工+人工智能”发展前景,提出从分子层面、过程装备层面、系统优化层面协同推进能源化工领域的低碳化与智慧化转型,并引入思维链驱动的推理大模型,通过多学科的交叉合作,以实现更高效、更绿色的能源系统,为应对全球气候变化和资源短缺挑战提供切实可行的解决方案。
中图分类号:
刘东阳, 何福鹏, 邱伟, 周天航, 赵亮, 徐春明. 低碳智慧化转型:能源化工领域的未来发展与挑战[J]. 化工进展, 2025, 44(6): 3305-3323.
LIU Dongyang, HE Fupeng, QIU Wei, ZHOU Tianhang, ZHAO Liang, XU Chunming. Low-carbon intelligent transformation: Future development and challenges in the energy and chemical sectors[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3305-3323.
| 项目 | 蒸汽管网/加热炉 | 电加热 |
|---|---|---|
| 加热温度 | ≤200℃,当需要≥200℃用燃料加热炉 | 50~1500℃ |
| 热效率/% | ≤85 | 90~99 |
| 碳排放 | 高 | 0 |
| 维护费用 | 高 | 低 |
| 加热成本 | 较低 | 目前约为蒸汽的4~5倍,但随着风电、光电普及,成本总体低于蒸汽管网 |
表1 传统蒸汽管网加热和电加热比较[97]
| 项目 | 蒸汽管网/加热炉 | 电加热 |
|---|---|---|
| 加热温度 | ≤200℃,当需要≥200℃用燃料加热炉 | 50~1500℃ |
| 热效率/% | ≤85 | 90~99 |
| 碳排放 | 高 | 0 |
| 维护费用 | 高 | 低 |
| 加热成本 | 较低 | 目前约为蒸汽的4~5倍,但随着风电、光电普及,成本总体低于蒸汽管网 |
| [1] | CAUDLE Peter G. Chemicals and energy the next 25 years[J]. Futures, 1978, 10(5): 361-379. |
| [2] | ZHENG Renyang, LIU Zhicheng, WANG Yangdong, et al. The future of green energy and chemicals: Rational design of catalysis routes[J]. Joule, 2022, 6(6): 1148-1159. |
| [3] | WANG Yangyang, LIU Yangyang, XU Zaifeng, et al. A review on renewable energy-based chemical engineering design and optimization[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 114015. |
| [4] | 柯晓明, 乞孟迪, 王德亮, 等. 绿色复苏,创新未来——2024年能源化工产业发展展望[J]. 当代石油石化, 2024, 32(3): 8-15. |
| KE Xiaoming, QI Mengdi, WANG Deliang, et al. Green recovery, innovative future: Outlook for the development of energy and chemical industry in 2024[J]. Petroleum & Petrochemical Today, 2024, 32(3): 8-15. | |
| [5] | 洪波. 炼化企业绿色低碳转型发展的思考[J]. 炼油技术与工程, 2024, 54(10): 1-3. |
| HONG Bo. Thoughts on the green and low-carbon transformation and development of refining and chemical enterprises[J]. Petroleum Refinery Engineering, 2024, 54(10): 1-3. | |
| [6] | ZHANG Chuan, HU Peiyu, YIN Gege, et al. Comprehensive review and future trend outlook on energy utilization technologies in low-carbon energy systems[J]. Strategic Study of CAE, 2024, 26(4): 164. |
| [7] | AKHTARUZZAMAN Md, RAHMAN Molla Ramizur. Commonality in systemic risk from green and conventional energy[J]. Energy Economics, 2024: 107404. |
| [8] | LIU Zecheng, ZHONG Wenqi, LIU Xuejiao, et al. Techno-economic and environmental evaluation of a supercritical CO2 coal-fired circulating fluidized bed boiler power generation[J]. Energy, 2023, 285: 129470. |
| [9] | 吕俊复, 蒋苓, 柯希玮, 等. 碳中和背景下循环流化床燃烧技术在中国的发展前景[J]. 煤炭科学技术, 2023, 51(1): 514-522. |
| Junfu LYU, JIANG Ling, KE Xiwei, et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology, 2023, 51(1): 514-522. | |
| [10] | ESQUIVEL-PATIÑO Gerardo G, Fabricio NÁPOLES-RIVERA, Arturo JIMÉNEZ-GUTIÉRREZ. Thermal integration of a natural gas combined cycle power plant with carbon capture and utilization technologies[J]. Energy Conversion and Management, 2023, 295: 117619. |
| [11] | YADAV Sujeet, S-S MONDAL. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology[J]. Fuel, 2022, 308: 122057. |
| [12] | TIAN Xiaoxi, KANG Jianing, DAI Min, et al. Unleashing tomorrow’s potential: A comprehensive exploration of risks in carbon capture and storage[J]. Renewable and Sustainable Energy Reviews, 2025, 210: 115174. |
| [13] | 李阳, 王锐, 赵清民, 等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报, 2023, 8(4): 391-397. |
| LI Yang, WANG Rui, ZHAO Qingmin, et al. Status and prospects for CO2 capture, utilization and storage technology in China[J]. Petroleum Science Bulletin, 2023, 8(4): 391-397. | |
| [14] | Saiful ISLAM M, BRUCE Peter G, CATLOW C Richard A, et al. Energy materials for a low carbon future[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2152): 20190219. |
| [15] | VIRTUANI Alessandro, BORJA BLOCK Alejandro, WYRSCH Nicolas, et al. The carbon intensity of integrated photovoltaics[J]. Joule, 2023, 7(11): 2511-2536. |
| [16] | RAMOROKA Morongwa E, YUSSUF Sodiq T, NWAMBAEKWE Kelechi C, et al. Advances in organic photovoltaic cells: Fine-tuning of the photovoltaic processes[J]. Solar RRL, 2024, 8(7): 2300982. |
| [17] | ZHAO Weiwei, LIN Xuefeng, ZHANG Tongtong, et al. Large-scale energy storage for carbon neutrality: Thermal energy storage for electrical vehicles[J]. Carbon Neutrality, 2024, 3(1): 30. |
| [18] | NAYAK Dr Prasant Kumar, YANG Liangtao, BREHM Wolfgang, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. |
| [19] | KUMAR Deepak, RAJOURIA Satish Kumar, KUHAR Suman B, et al. Progress and prospects of sodium-sulfur batteries: A review[J]. Solid State Ionics, 2017, 312: 8-16. |
| [20] | Ozan AKDAĞ. The operation and applicability to hydrogen fuel technology of green hydrogen production by water electrolysis using offshore wind power[J]. Journal of Cleaner Production, 2023, 425: 138863. |
| [21] | 李蓝宇, 黄新烨, 王笑楠, 等. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
| LI Lanyu, HUANG Xinye, WANG Xiaonan, et al. Reflection and prospects on the intelligent transformation of chemical engineering research[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. | |
| [22] | PENG Xiting, WANG Xiaonan. Next-generation intelligent laboratories for materials design and manufacturing[J]. MRS Bulletin, 2023, 48(2): 179-185. |
| [23] | COUTINHO Dayane M, Daniela FRANÇA, VANINI Gabriela, et al. Understanding the molecular composition of petroleum and its distillation cuts[J]. Fuel, 2022, 311: 122594. |
| [24] | OLSTHOORN Dave, HAGHIGHAT Fariborz, MIRZAEI Parham A. Integration of storage and renewable energy into district heating systems: A review of modelling and optimization[J]. Solar Energy, 2016, 136: 49-64. |
| [25] | 马苏甜, 刘颖荣, 王威, 等. 基于质谱技术的重油分子组成表征研究进展[J]. 石油化工, 2020, 49(5): 502-512. |
| MA Sutian, LIU Yingrong, WANG Wei, et al. Development in molecular composition characterization of heavy oil by mass spectrometry techniques[J]. Petrochemical Technology, 2020, 49(5): 502-512. | |
| [26] | 陈保国. X射线衍射(XRD)在研究煤结构中的应用[J]. 现代商贸工业, 2014, 35(3): 195-196. |
| CHEN Baoguo. Application of X-ray diffraction (XRD) in studying coal structure[J]. Modern Business Trade Industry, 2014, 35(3): 195-196. | |
| [27] | WU Zhenghao, ZHOU Tianhang. Structural coarse-graining via multiobjective optimization with differentiable simulation[J]. Journal of Chemical Theory and Computation, 2024, 20(6): 2605-2617. |
| [28] | ZHANG Yanfen, HAN Yehua, WU Jianxun, et al. Comprehensive composition, structure, and size characterization for thiophene compounds in petroleum using ultrahigh-resolution mass spectrometry and trapped ion mobility spectrometry[J]. Analytical Chemistry, 2021, 93(12): 5089-5097. |
| [29] | LI Shuofan, WU Jianxun, ZHANG Weilai, et al. Speciation and molecular characterization of thiophenic and sulfide compounds in petroleum by sulfonation and methylation followed by electrospray mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2023, 415(10): 1889-1896. |
| [30] | FOLLI Gabriely S, SOUZA Lindamara M, ARAÚJO Bruno Q, et al. Comparing the intermediate precision in petroleomics by ultrahigh-resolution mass spectrometry[J]. Energy & Fuels, 2021, 35(20): 16465-16481. |
| [31] | SAHL Steffen J, MATTHIAS Jessica, INAMDAR Kaushik, et al. Direct optical measurement of intramolecular distances with angstrom precision[J]. Science, 2024, 386(6718): 180-187. |
| [32] | 刘秋芳, 褚小立, 陈瀑, 等. 基于近红外光谱快速预测石脑油单体烃分子组成[J]. 石油炼制与化工, 2022, 53(1): 86-92. |
| LIU Qiufang, CHU Xiaoli, CHEN Pu, et al. Rapid prediction of hydrocarbon molecular composition of naphtha based on near infrared spectroscopy[J]. Petroleum Processing and Petrochemicals, 2022, 53(1): 86-92. | |
| [33] | 周康, 魏朝良, 汤仲平, 等. 结合机器学习和强化学习的润滑油分子集生成方法[J]. 石油学报(石油加工), 2025, 41(3): 804-816. |
| ZHOU Kang, WEI Chaoliang, TANG Zhongping, et al. Molecule Library Generation Method of Lubricating Oil Based on Machine Learning and Reinforcement Learning[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2025, 41(3): 804-816. | |
| [34] | ZHAO Qingkun, ZHU Qi, ZHANG Zhenghao, et al. Imaging of atomic stress at grain boundaries based on machine learning[J]. Journal of the Mechanics and Physics of Solids, 2023, 181: 105455. |
| [35] | WANG Yaxin, XU Baochang, PANG Congrui. Intelligent identification method of chemical processes based on maximum mean discrepancy domain generalization[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 150: 105075. |
| [36] | YANG Wentao, ZHAO Bin, CHEN Weiguang, et al. Theoretical investigation of adsorption and dissociation behaviors of H2O molecules on the surfaces of Transition-metal doped γ-graphyne[J]. Materials Today Communications, 2023, 37: 107109. |
| [37] | LI Tongtong, ZHANG Jiashuo, REN Ruixiang, et al. Atomic-scale insights into single-atom embedded on N-doped carbon electrocatalyst mechanisms for sulfur reduction reaction in LiS batteries[J]. Journal of Energy Storage, 2024, 88: 111600. |
| [38] | XIAO Shifa, ZHANG Daoqing, WANG Guangzhao, et al. Density functional theory study of triple transition metal cluster anchored on the C2N monolayer for nitrogen reduction reactions[J]. Molecules, 2024, 29(14): 3314. |
| [39] | XU Yanyan, QI Chenze, WANG Chen. Computational study on the mechanism of CBT-Cys click reaction[J]. Computational and Theoretical Chemistry, 2020, 1185: 112874. |
| [40] | ZHANG Lei, JIANG Bo, CHEN Yu, et al. A computational study on the reaction mechanisms of nickel-catalyzed diarylation of alkenes[J]. European Journal of Organic Chemistry, 2019, 2019(36): 6217-6224. |
| [41] | WU Xiaopeng, HAN Jie, XIA Siyu, et al. Decarboxylative acylation of carboxylic acids: Reaction investigation and mechanistic study[J]. CCS Chemistry, 2022, 4(7): 2469-2480. |
| [42] | ZHONG Mingbing, Yohann GAGNÉ, HOPE Taylor O, et al. Copper-photocatalyzed hydroboration of alkynes and alkenes[J]. Angewandte Chemie International Edition, 2021, 60(26): 14498-14503. |
| [43] | QU Ruiyang, JUNGE Kathrin, BELLER Matthias. Hydrogenation of carboxylic acids, esters, and related compounds over heterogeneous catalysts: A step toward sustainable and carbon-neutral processes[J]. Chemical Reviews, 2023, 123(3): 1103-1165. |
| [44] | XIE Wenbo, XU Jiayan, CHEN Jianfu, et al. Achieving theory-experiment parity for activity and selectivity in heterogeneous catalysis using microkinetic modeling[J]. Accounts of Chemical Research, 2022, 55(9): 1237-1248. |
| [45] | MOU Tianyou, PILLAI Hemanth Somarajan, WANG Siwen, et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning[J]. Nature Catalysis, 2023, 6: 122-136. |
| [46] | SHEN Zhenzhen, LANG Shuangyan, SHI Yang, et al. Revealing the surface effect of the soluble catalyst on oxygen reduction/evolution in Li-O2 batteries[J]. Journal of the American Chemical Society, 2019, 141(17): 6900-6905. |
| [47] | LI Wencui, LI Zhi, SHEN Hengfang, et al. Nitrogen vacancy-rich C3N x -confined Fe-Cu diatomic catalysts for the direct selective oxidation of methane at low temperature[J]. ACS Catalysis, 2024, 14(14): 10689-10700. |
| [48] | WHITTAKER Todd N, FISHLER Yuval, CLARY Jacob M, et al. Insights into electrochemical CO2 reduction on metallic and oxidized tin using grand-canonical DFT and in situ ATR-SEIRA spectroscopy[J]. ACS Catalysis, 2024, 14(11): 8353-8365. |
| [49] | LIU Shengtang, TIAN Bailin, XU Xinrui, et al. Ampere-level electrolytic coproduction of formate with coupled carbon dioxide reduction and selective methanol oxidation[J]. ACS Catalysis, 2024, 14(12): 9476-9486. |
| [50] | DING Shipeng, HÜLSEY Max J, Javier PÉREZ-RAMÍREZ, et al. Transforming energy with single-atom catalysts[J]. Joule, 2019, 3(12): 2897-2929. |
| [51] | 王树东. 保障国家能源安全 推进绿色低碳转型 高质量助力中国式现代化建设[J]. 中国煤炭工业, 2024(8): 6-9. |
| WANG Shudong. Ensure national energy security, promote green and low-carbon transformation, and help Chinese modernization with high quality[J]. China Coal Industry, 2024(8): 6-9. | |
| [52] | WANG Hao, LI Jing. Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers[J]. Accounts of Chemical Research, 2019, 52(7): 1968-1978. |
| [53] | ZHOU Lin, Pedro BRÂNTUAS, HENRIQUE Adriano, et al. A microporous multi-cage metal-organic framework for an effective one-step separation of branched alkanes feeds[J]. Angewandte Chemie International Edition, 2024, 63(15): e202320008. |
| [54] | SHEN Qi, XU Shaohan, CUI Rongrong, et al. Energy-oriented utilization from organic wastewater: Directional photoelectrocatalytic conversion of phenol to C1 fuels[J]. Chemical Engineering Journal, 2023, 471: 144422. |
| [55] | ZHANG Yubo, WANG Saifei, LIU Xuan, et al. Revealing the promotion/inhibition mechanism of CO3 2- in the oriented electrocatalytic conversion of ethane to 2-propanol and acetone[J]. Applied Catalysis B: Environment and Energy, 2024, 353: 124063. |
| [56] | ZHANG Xiaofei, HUANG Wenhuan, YU Le, et al. Enabling heterogeneous catalysis to achieve carbon neutrality: Directional catalytic conversion of CO2 into carboxylic acids[J]. Carbon Energy, 2024, 6(3): e362. |
| [57] | 肖兰兰, 李陌兮. 全球气候变化背景下能源安全的“绿化”与中国的战略选择[J]. 中国石油大学学报(社会科学版), 2024, 40(6): 69-79. |
| XIAO Lanlan, LI Moxi. “Greening” of energy security in the context of global climate change and China’s strategic choice[J]. Journal of China University of Petroleum (Edition of Social Sciences), 2024, 40(6): 69-79. | |
| [58] | SONG Qilei, JIANG Shan, HASELL Tom, et al. Molecular sieves: Porous organic cage thin films and molecular-sieving membranes (adv. mater. 13/2016)[J]. Advanced Materials, 2016, 28(13): 2652. |
| [59] | LIU Zhongyun, QIU Wulin, QUAN Wenying, et al. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations[J]. Nature Materials, 2023, 22(1): 109-116. |
| [60] | YAMAMOTO Kazuhiro, MACHIDA Koichi, KOTANI Akira, et al. Emerging separation techniques in supercritical fluid chromatography[J]. Chemical & Pharmaceutical Bulletin, 2021, 69(10): 970-975. |
| [61] | IGNATUSHA Pavlo, LIN Haiqing, KAPUSCINSKY Noe, et al. Membrane separation technology in direct air capture[J]. Membranes, 2024, 14(2): 30. |
| [62] | ZHOU Rui, BAO Luyao, BU Weifeng, et al. Exploring high-performance viscosity index improver polymers via high-throughput molecular dynamics and explainable AI[J]. NPJ Computational Materials, 2025, 11: 52. |
| [63] | XIE Ao, ZHANG Jiaying, WANG Xingang, et al. Dynamic covalent oleogel with mechanical force-induced reversible phase transition for self-adaptive lubrication[J]. Advanced Functional Materials, 2025: 2501417. |
| [64] | SIMLANDY Amit Kumar, RODPHON Warabhorn, ALTURAIFI Turki M, et al. Catalytic addition of nitroalkanes to unactivated alkenes via directed carbopalladation[J]. ACS Catalysis, 2022, 12(21): 13755-13762. |
| [65] | YIN Peng, NIU Xiangfu, LI Shuobin, et al. Machine-learning-accelerated design of high-performance platinum intermetallic nanoparticle fuel cell catalysts[J]. Nature Communications, 2024, 15(1): 415. |
| [66] | FANG Zhaolin, LI Shuyuan, ZHANG Yunjiang, et al. The DFT and machine learning method accelerated the discovery of DMSCs with high ORR and OER catalytic activities[J]. The Journal of Physical Chemistry Letters, 2024, 15(1): 281-289. |
| [67] | JIAO Dongxu, LI Xinyi, SUN Mingzi, et al. Machine learning driven rational design of dual atom catalysts on graphene for carbon dioxide electroreduction[J]. Nano Research, 2025, 18(1): 94907044. |
| [68] | Janghoon OCK, BADRINARAYANAN Srivathsan, MAGAR Rishikesh, et al. Multimodal language and graph learning of adsorption configuration in catalysis[J]. Nature Machine Intelligence, 2024, 6: 1501-1511. |
| [69] | STUDER Prof Armido, CURRAN Prof Dennis P. Catalysis of radical reactions: A radical chemistry perspective[J]. Angewandte Chemie International Edition, 2016, 55(1): 58-102. |
| [70] | YAN Ming, Julian C LO, EDWARDS Jacob T, et al. Radicals: Reactive intermediates with translational potential[J]. Journal of the American Chemical Society, 2016, 138(39): 12692-12714. |
| [71] | 田昊, 徐冰君. 多相催化中自由基及其反应的研究新进展[J]. 复旦学报(自然科学版), 2022, 61(6): 662-669. |
| TIAN Hao, XU Bingjun. Recent progress in free radicals and radical reactions in heterogeneous catalysis[J]. Journal of Fudan University (Natural Science), 2022, 61(6): 662-669. | |
| [72] | WANG Lu, LEAR Jeremy M, RAFFERTY Sean M, et al. Ketyl radical reactivity via atom transfer catalysis[J]. Science, 2018, 362(6411): 225-229. |
| [73] | DONG Jie, YUAN Xiangai, YAN Zhongfei, et al. Manganese-catalysed divergent silylation of alkenes[J]. Nature Chemistry, 2021, 13(2): 182-190. |
| [74] | GE Liang, ZHOU Huan, CHIOU Mong-Feng, et al. Iron-catalysed asymmetric carboazidation of styrenes[J]. Nature Catalysis, 2021, 4: 28-35. |
| [75] | CHUANG Chin-Wei, HUANG Guanru, HUNG Dr Shiang-Fu, et al. Enantioselective radical-type 1,2-alkoxy-phosphinoylation to styrenes catalyzed by chiral vanadyl complexes[J]. Angewandte Chemie International Edition, 2023, 62(16): e202300654. |
| [76] | HUANG Weixin. Uniform catalytic nanocrystals: From model catalysts to efficient catalysts[J]. Accounts of Materials Research, 2023, 4(4): 373-384. |
| [77] | LIU Qinggang, MA Junguo, CHEN Chen. Rational design and precise manipulation of nano-catalysts[J]. Chinese Journal of Catalysis, 2022, 43(4): 898-912. |
| [78] | YANG Yao, ZHOU Jihan, ZHAO Zipeng, et al. Atomic-scale identification of active sites of oxygen reduction nanocatalysts[J]. Nature Catalysis, 2024, 7: 796-806. |
| [79] | LI Wei, CHU Xiaoshan, WANG Fei, et al. Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light[J]. Applied Catalysis B: Environmental, 2022, 304: 121000. |
| [80] | YOO Ji Mun, SHIN Heejong, CHUNG Dong Young, et al. Carbon shell on active nanocatalyst for stable electrocatalysis[J]. Accounts of Chemical Research, 2022, 55(9): 1278-1289. |
| [81] | LEI Yaojie, LU Xinxin, YOSHIKAWA Hirofumi, et al. Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries[J]. Nature Communications, 2024, 15(1): 3325. |
| [82] | DONG Dr Jinqiao, HAN Dr Xing, LIU Prof Yan, et al. Metal-covalent organic frameworks (MCOFs): A bridge between metal-organic frameworks and covalent organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(33): 13722-13733. |
| [83] | YANG Caoyu, TANG Zhiyong. A new nexus in metal-organic frameworks[J]. Chem, 2024, 10(2): 427-429. |
| [84] | LIU Peng, ZHAO Simin, GAO Shengyong, et al. Utilizing MOFs melt-foaming to design functionalized carbon foams for 100% deep-discharge and ultrahigh capacity sodium metal anodes[J]. ACS Nano, 2025, 19(1): 1577-1587. |
| [85] | YE Lu, GAO Yan, CAO Shuyan, et al. Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets[J]. Applied Catalysis B: Environmental, 2018, 227: 54-60. |
| [86] | YU Liang, ULLAH Saif, ZHOU Kang, et al. A microporous metal-organic framework incorporating both primary and secondary building units for splitting alkane isomers[J]. Journal of the American Chemical Society, 2022, 144(9): 3766-3770. |
| [87] | MAITY Tanmoy, SARKAR Susmita, KUNDU Susmita, et al. Steering diffusion selectivity of chemical isomers within aligned nanochannels of metal-organic framework thin film[J]. Nature Communications, 2024, 15(1): 9636. |
| [88] | SHU Dr Lun, PENG Dr Yuan, YAO Rui, et al. Flexible soft-solid metal-organic framework composite membranes for H2/CO2 separation[J]. Angewandte Chemie International Edition, 2022, 61(14): e202117577. |
| [89] | 张后虎, 吴晓莉, 陈冲冲, 等. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550. |
| ZHANG Houhu, WU Xiaoli, CHEN Chongchong, et al. Preparation of 2D lamellar CD-MOF membranes for accurate separation of mixed solvents[J]. CIESC Journal, 2022, 73(10): 4539-4550. | |
| [90] | CHEN Yang, YANG Dongxiao, WANG Yi, et al. A robust metal-organic framework for simultaneous C2H4/C3H6 capture and C2H2/CO2 separation[J]. Fuel, 2024, 368: 131673. |
| [91] | CUI Jiyu, ZHANG Zhaoqiang, YANG Lifeng, et al. A molecular sieve with ultrafast adsorption kinetics for propylene separation[J]. Science, 2024, 383(6679): 179-183. |
| [92] | DU Shengjun, HUANG Jiawu, RYDER Matthew R, et al. Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation[J]. Nature Communications, 2023, 14(1): 1197. |
| [93] | ZHOU Tianhang, LIU Ziyu, YUAN Shengwei, et al. Machine-learning assisted analysis on coupled fluid-dynamics and electrochemical processes in interdigitated channel for iron-chromium flow batteries[J]. Chemical Engineering Journal, 2024, 496: 153904. |
| [94] | 吴凌鹤. 能源转型背景下炼化企业转型升级策略研究[J]. 中外能源, 2024, 29(5): 68-74. |
| WU Linghe. Research on transformation and upgrading strategies of refining and petrochemical companies in the context of energy transition[J]. Sino-Global Energy, 2024, 29(5): 68-74. | |
| [95] | HE Prof Mingyuan, SUN Prof Yuhan, HAN Prof Buxing. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality[J]. Angewandte Chemie International Edition, 2022, 61(15): e202112835. |
| [96] | 王尧. “双碳” 目标下绿色电力低碳发展路径研究[J]. 现代工业经济和信息化, 2023, 13(8): 189-191. |
| WANG Yao. Research on the path of low-carbon development of green electricity under the goal of “dual carbon”[J]. Modern Industrial Economy and Informationization, 2023, 13(8): 189-191. | |
| [97] | BELL Jason L. Boiler project fundamentals[J]. Chemical Engineering Progress, 2017, 113(9): 53-59. |
| [98] | KIM Yong Tae, LEE Jinju, LEE Jechan. Electricity-driven reactors that promote thermochemical catalytic reactions via joule and induction heating[J]. Chemical Engineering Journal, 2023, 470: 144333. |
| [99] | SANGSTER Alan J. Massive energy storage systems enable secure electricity supply from renewables[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 659-667. |
| [100] | GE Guangxu, ZHANG Changkun, LI Xianfeng. Multi-electron transfer electrode materials for high-energy-density flow batteries[J]. Next Energy, 2023, 1(3): 100043. |
| [101] | ZHANG Leyuan, FENG Ruozhu, WANG Wei, et al. Emerging chemistries and molecular designs for flow batteries[J]. Nature Reviews Chemistry, 2022, 6(8): 524-543. |
| [102] | GONG Ke, FANG Qianrong, GU Shuang, et al. Nonaqueous redox-flow batteries: Organic solvents, supporting electrolytes, and redox pairs[J]. Energy & Environmental Science, 2015, 8(12): 3515-3530. |
| [103] | WU Min, Mingjun NAN, YE Yujiao, et al. A highly active electrolyte for high-capacity iron-chromium flow batteries[J]. Applied Energy, 2024, 358: 122534. |
| [104] | YE Lingzhi, QI Shaotian, CHENG Tukang, et al. Vanadium redox flow battery: Review and perspective of 3D electrodes[J]. ACS Nano, 2024, 18(29): 18852-18869. |
| [105] | WANG Jiahui, MU Anle, YANG Bin, et al. Numerical simulation of all-vanadium redox flow battery performance optimization based on flow channel cross-sectional shape design[J]. Journal of Energy Storage, 2024, 93: 112409. |
| [106] | PENG Dr Kang, ZHANG Chao, FANG Junkai, et al. Constructing microporous ion exchange membranes via simple hypercrosslinking for pH-neutral aqueous organic redox flow batteries[J]. Angewandte Chemie International Edition, 2024, 63(37): e202407372. |
| [107] | 吴正浩, 周天航, 蓝兴英, 等. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
| WU Zhenghao, ZHOU Tianhang, LAN Xingying, et al. AI-driven innovative design of chemicals in practice and perspective[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. | |
| [108] | 刘子玉, 姜泽坤, 邱伟, 等. 人工智能在长时液流电池储能中的应用: 性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
| LIU Ziyu, JIANG Zekun, QIU Wei, et al. Application of artificial intelligence in long-duration redox flow batteries storage systems[J]. Energy Storage Science and Technology, 2024, 13(9): 2871-2883. | |
| [109] | NIU Yingchun, HEYDARI Ali, QIU Wei, et al. Machine learning-enabled performance prediction and optimization for iron-chromium redox flow batteries[J]. Nanoscale, 2024, 16(8): 3994-4003. |
| [110] | WU Jine, YUAN Chenguang, LI Tianyu, et al. Dendrite-free zinc-based battery with high areal capacity via the region-induced deposition effect of turing membrane[J]. Journal of the American Chemical Society, 2021, 143(33): 13135-13144. |
| [111] | LI Haobo, HAO Junnan, QIAO Shizhang. AI-driven electrolyte additive selection to boost aqueous Zn-ion batteries stability[J]. Advanced Materials, 2024, 36(49): 2411991. |
| [112] | WANG Kuo, ZHAN Hongtu, LIU Xiaoxia, et al. Uncovering required molecular properties for interface regulators and modification mechanisms for Zn anode in aqueous batteries[J]. Advanced Functional Materials, 2025, 35(16): 2418993. |
| [113] | LI Tianyu, LU Wenjing, YUAN Zhizhang, et al. A data-driven and DFT assisted theoretic guide for membrane design in flow batteries[J]. Journal of Materials Chemistry A, 2021, 9(25): 14545-14552. |
| [114] | DING Cong, ZHANG Huamin, LI Xianfeng, et al. Vanadium flow battery for energy storage: Prospects and challenges[J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1281-1294. |
| [115] | ZHANG Kaiyue, YAN Chuanwei, TANG Ao. Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries[J]. Energy Storage Materials, 2021, 34: 301-310. |
| [116] | WATERS Scott E, DAVIS Casey M, THURSTON Jonathan R, et al. Maximizing vanadium deployment in redox flow batteries through chelation[J]. Journal of the American Chemical Society, 2022, 144(39): 17753-17757. |
| [117] | KIM Ki Jae, PARK Min-Sik, KIM Young-Jun, et al. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2015, 3(33): 16913-16933. |
| [118] | 蔡家辉, 朱凯, 赖勤志. 全钒液流电池电极材料关键问题及应对策略[J/OL]. 精细化工, 1-15[2025-05-20]. . |
| CAI Jiahui 1, ZHU Kai1, LAI Qinzhi. Key issues and corresponding strategies of electrode for vanadium redox flow battery[J]. Fine Chemicals, 1-15[2025-05-20]. . | |
| [119] | CLEMENTE Alejandro, PULESTON Thomas, CECILIA Andreu, et al. Blending deep-learning and observers for improved state of charge estimation in vanadium flow batteries[J]. ISA Transactions, 2025, 157: 620-630. |
| [120] | LI Tianyu, XING Feng, LIU Tao, et al. Cost, performance prediction and optimization of a vanadium flow battery by machine-learning[J]. Energy & Environmental Science, 2020, 13(11): 4353-4361. |
| [121] | 张宏伟, 朱海波, 吴欣茹, 等. “双碳” 目标下绿色清洁能源技术现状与发展趋势[J]. 石油科学通报, 2023, 8(5): 555-576. |
| ZHANG Hongwei, ZHU Haibo, WU Xinru, et al. Status quo and future trends of green and clean energy technology toward “dual carbon” goal[J]. Petroleum Science Bulletin, 2023, 8(5): 555-576. | |
| [122] | 蒲田, 胡建清, 周红军, 等. 炼化工业碳减排路径与电化工/电供能技术发展综述[J]. 石油科学通报, 2023, 8(4): 445-460. |
| PU Tian, HU Jianqing, ZHOU Hongjun, et al. Low-carbon pathways and electrochemical/electrification technologies development in the refining-chemical industry: A review[J]. Petroleum Science Bulletin, 2023, 8(4): 445-460. | |
| [123] | HU Canyu, DONG Yueyue, SHI Qianqi, et al. Catalysis under electric-/magnetic-/electromagnetic-field coupling[J]. Chemical Society Reviews, 2025, 54(2): 524-559. |
| [124] | TRAN Bolton, MILNER Scott T, JANIK Michael J. Kinetics of acid-catalyzed dehydration of alcohols in mixed solvent modeled by multiscale DFT/MD[J]. ACS Catalysis, 2022, 12(21): 13193-13206. |
| [125] | KIRSH Jacob M, WEAVER Jared Bryce, BOXER Steven G, et al. Critical evaluation of polarizable and nonpolarizable force fields for proteins using experimentally derived nitrile electric fields[J]. Journal of the American Chemical Society, 2024, 146(10): 6983-6991. |
| [126] | WELBORN Valerie Vaissier, RUIZ PESTANA Luis, Teresa HEAD-GORDON. Computational optimization of electric fields for better catalysis design[J]. Nature Catalysis, 2018, 1: 649-655. |
| [127] | ADESINA Aduragbemi S, Katarzyna ŚWIDEREK, Louis Y P LUK, et al. Electric field measurements reveal the pivotal role of cofactor-substrate interaction in dihydrofolate reductase catalysis[J]. ACS Catalysis, 2020, 10(14): 7907-7914. |
| [128] | FRIED Stephen D, BAGCHI Sayan, BOXER Steven G. Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes[J]. Journal of the American Chemical Society, 2013, 135(30): 11181-11192. |
| [129] | FRIED Stephen D, BOXER Steven G. Measuring electric fields and noncovalent interactions using the vibrational stark effect[J]. Accounts of Chemical Research, 2015, 48(4): 998-1006. |
| [130] | SHARMA Rachita, VELEV Orlin D. Remote steering of self-propelling microcircuits by modulated electric field[J]. Advanced Functional Materials, 2015, 25(34): 5512-5519. |
| [131] | ZENG Dr Li, WANG Jianxing, WANG Daoxin, et al. Comprehensive comparisons between directing and alternating current electrolysis in organic synthesis[J]. Angewandte Chemie International Edition, 2023, 62(50): e202309620. |
| [132] | BOLAT Rustem, GUEVARA Jose M, LEINEN Philipp, et al. Electrostatic potentials of atomic nanostructures at metal surfaces quantified by scanning quantum dot microscopy[J]. Nature Communications, 2024, 15: 2259. |
| [133] | Miguel RECIO-POO, Ángel MORALES-GARCÍA, ILLAS Francesc, et al. Tuning electronic levels in photoactive hydroxylated titania nanosystems: Combining the ligand dipole effect and quantum confinement[J]. Nanoscale, 2024, 16(18): 8975-8985. |
| [134] | ASADI Mojgan, WARSHEL Arieh. Analyzing the reaction of orotidine 5'-phosphate decarboxylase as a way to examine some key catalytic proposals[J]. Journal of the American Chemical Society, 2023, 145(2): 1334-1341. |
| [135] | PRAH Alja, MAVRI Janez, STARE Jernej. An electrostatic duel: Subtle differences in the catalytic performance of monoamine oxidase A and B isoenzymes elucidated at the residue level using quantum computations[J]. Physical Chemistry Chemical Physics, 2021, 23(46): 26459-26467. |
| [136] | KE Changming, LIN Zijing, LIU Shi. Three-dimensional activity volcano plot under an external electric field[J]. ACS Catalysis, 2022, 12(21): 13542-13548. |
| [137] | LACONSAY Croix J, SEGUIN Trevor J, WHEELER Steven E. Modulating stereoselectivity through electrostatic interactions in a SPINOL-phosphoric acid-catalyzed synthesis of 2,3-dihydroquinazolinones[J]. ACS Catalysis, 2020, 10(20): 12292-12299. |
| [138] | LOU Yazhou, WEI Junqiang, LI Mingfeng, et al. Distal ionic substrate-catalyst interactions enable long-range stereocontrol: Access to remote quaternary stereocenters through a desymmetrizing suzuki-miyaura reaction[J]. Journal of the American Chemical Society, 2022, 144(1): 123-129. |
| [139] | SHIMONI Ran, SHI Zhuocheng, BINYAMIN Shahar, et al. Electrostatic secondary-sphere interactions that facilitate rapid and selective electrocatalytic CO2 reduction in a Fe-porphyrin-based metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(32): e202206085. |
| [140] | YU Jinli, YIN Jinwen, LI Ruchun, et al. Interfacial electric field effect on electrochemical carbon dioxide reduction reaction[J]. Chem Catalysis, 2022, 2(9): 2229-2252. |
| [141] | TIAN Han, ZENG Liming, HUANG Yifan, et al. In situ electrochemical Mn(Ⅲ)/Mn(Ⅳ) generation of Mn(Ⅱ)O electrocatalysts for high-performance oxygen reduction[J]. Nano-Micro Letters, 2020, 12(1): 161. |
| [142] | BING Weihan, ZHENG Lei, HE Shan, et al. Insights on active sites of CaAl-hydrotalcite as a high-performance solid base catalyst toward aldol condensation[J]. ACS Catalysis, 2018, 8(1): 656-664. |
| [143] | QIU Chenglong, DENG Shengwei, SUN Xiang, et al. Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA[J]. Journal of Membrane Science, 2021, 635: 119462. |
| [144] | GAO Dunfeng, ZHOU Hu, WANG Jing, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. |
| [145] | SUN Xiang, ZHENG Jingnan, GAO Yijing, et al. Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials[J]. Applied Surface Science, 2020, 526: 146522. |
| [146] | LI Chenyu, WANG Zhijie, LIU Mingda, et al. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction[J]. Nature Communications, 2022, 13(1): 3338. |
| [147] | XI Dawei, LI Jiayi, Jingxiang LOW, et al. Limiting the uncoordinated N species in M-N x single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range[J]. Advanced Materials, 2022, 34(25): 2104090. |
| [148] | XING Lingli, LIU Rui, GONG Zhichao, et al. Ultrafast Joule heating synthesis of hierarchically porous graphene-based Co-N-C single-atom monoliths[J]. Nano Research, 2022, 15(5): 3913-3919. |
| [149] | MEI Xueyi, ZHU Xingbao, ZHANG Yexin, et al. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts[J]. Nature Catalysis, 2021, 4: 1002-1011. |
| [150] | LIN Calvin H, WAN Chenghao, RU Zhennan, et al. Electrified thermochemical reaction systems with high-frequency metamaterial reactors[J]. Joule, 2024, 8(10): 2938-2949. |
| [151] | YANG Hanmin, ZAINI Ilman Nuran, PAN Ruming, et al. Distributed electrified heating for efficient hydrogen production[J]. Nature Communications, 2024, 15(1): 3868. |
| [152] | SU Meixia, ZHOU Wenda, LIU Lin, et al. Micro eddy current facilitated by screwed MoS2 structure for enhanced hydrogen evolution reaction[J]. Advanced Functional Materials, 2022, 32(22): 2111067. |
| [153] | ZENG Wei, JIANG Zhenzhen, GONG Xunguo, et al. Atomic magnetic heating effect enhanced hydrogen evolution reaction of Gd@MoS2 single-atom catalysts[J]. Small, 2023, 19(4): 2206155. |
| [154] | POLETTO DOTSENKO Violetta, BELLUSCI Mariangela, MASI Andrea, et al. Improving the performances of supported NiCo catalyst for reforming of methane powered by magnetic induction[J]. Catalysis Today, 2023, 418: 114049. |
| [155] | KALE Sumeet S, ASENSIO Juan M, ESTRADER Marta, et al. Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlO x catalysts[J]. Catalysis Science & Technology, 2019, 9(10): 2601-2607. |
| [156] | VARSANO Francesca, BELLUSCI Mariangela, LA BARBERA Aurelio, et al. Dry reforming of methane powered by magnetic induction[J]. International Journal of Hydrogen Energy, 2019, 44(38): 21037-21044. |
| [157] | HU Yangguang, YU Can, WANG Song, et al. Identifying a highly efficient molecular photocatalytic CO2 reduction system via descriptor-based high-throughput screening[J]. Nature Catalysis, 2025, 8: 126-136. |
| [158] | Zhou Tianhang, Niu Yingchun., Lan Xingying, et al. Locally-Deployed Chain-of-Thought (CoT) Reasoning Model in Chemical Engineering: Starting from 30 Experimental Data[EB/OL]. 2025-02-01. . |
| [159] | 赵广立, 孙丹宁. 怀揣新型工业梦,探索“化工大模型”[N]. 中国科学报, 2025-04-01(001). |
| ZHAO Guangli, SUN Danning. Digital transformation in chemical engineering: developing industry-optimized AI models[N].Chinese Science Bulletin, 2025-04-01(001). |
| [1] | 郎雪梅, 樊栓狮, 王燕鸿, 李刚, 于驰, 王盛龙. 笼型水合物为能源化工带来新机遇[J]. 化工进展, 2021, 40(9): 4703-4710. |
| [2] | 陈定江,余亚东,胡山鹰,金 涌. 后石油经济时代中国能源化工的选择 [J]. 化工进展, 2009, 28(1): 1-. |
| [3] |
|
| [4] | 胡徐腾,王正元,李振宇. 我国能源化工面临的挑战及对策思考(Ⅰ) [J]. 化工进展, 2006, 25(3): 239-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |