| [1] |
DONG Yuchan, DUCHESNE Paul, MOHAN Abhinav, et al. Shining light on CO2: From materials discovery to photocatalyst, photoreactor and process engineering[J]. Chemical Society Reviews, 2020, 49(16): 5648-5663.
|
| [2] |
SCHNEIDER Jenny, MATSUOKA Masaya, TAKEUCHI Masato, et al. Understanding TiO2 photocatalysis: Mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
|
| [3] |
KAPILASHRAMI Mukes, ZHANG Yanfeng, LIU Yisheng, et al. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications[J]. Chemical Reviews, 2014, 114(19): 9662-9707.
|
| [4] |
LINSEBIGLER Amy, RUSU Camelia, YATES John T. Absence of platinum enhancement of a photoreaction on TiO2-CO photooxidation on Pt/TiO2(110)[J]. Journal of the American Chemical Society, 1996, 118(22): 5284-5289.
|
| [5] |
TASBIHI Minoo, FRESNO Fernando, SIMON Ulla, et al. On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica[J]. Applied Catalysis B: Environmental, 2018, 239: 68-76.
|
| [6] |
WANG Chujun, ZHAO Yilong, XU Hui, et al. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O[J]. Applied Catalysis B: Environmental, 2020, 263: 118314.
|
| [7] |
KANG Xi, CHONG Hanbao, ZHU Manzhou. Au25(SR)18: The captain of the great nanocluster ship[J]. Nanoscale, 2018, 10(23): 10758-10834.
|
| [8] |
CUI Xiaofeng, WANG Jin, LIU Bing, et al. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands[J]. Journal of the American Chemical Society, 2018, 140(48): 16514-16520.
|
| [9] |
CHEN Yongsiou, KAMAT Prashant V. Glutathione-capped gold nanoclusters as photosensitizers. visible light-induced hydrogen generation in neutral water[J]. Journal of the American Chemical Society, 2014, 136(16): 6075-6082.
|
| [10] |
CHEN Tiankai, FUNG Victor, YAO Qiaofeng, et al. Synthesis of water-soluble [Au25(SR)18]- using a stoichiometric amount of NaBH4 [J]. Journal of the American Chemical Society, 2018, 140(36): 11370-11377.
|
| [11] |
LI Chengcheng, WANG Tuo, ZHAO Zhijian, et al. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes[J]. Angewandte Chemie International Edition, 2018, 57(19): 5278-5282.
|
| [12] |
KHAN Rizwan, NAVEEN Malenahalli H, ABBAS Muhammad A, et al. Photoelectrochemistry of Au nanocluster-sensitized TiO2: Intricacy arising from the light-induced transformation of nanoclusters into nanoparticles[J]. ACS Energy Letters, 2021, 6(1): 24-32.
|
| [13] |
TAKAYAMA Tomoaki, SATO Ko, FUJIMURA Takehiro, et al. Photocatalytic CO2 reduction using water as an electron donor by a powdered Z-scheme system consisting of metal sulfide and an RGO-TiO2 composite[J]. Faraday Discussions, 2017, 198: 397-407.
|
| [14] |
LI Mengli, ZHANG Lingxia, WU Meiying, et al. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations[J]. Nano Energy, 2016, 19: 145-155.
|
| [15] |
LI Xing, BAI Yang, SHI Xian, et al. Mesoporous g-C3N4/MXene (Ti3C2T x ) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction[J]. Applied Surface Science, 2021, 546: 149111.
|
| [16] |
WANG Rui, SHEN Jun, SUN Kouhua, et al. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction[J]. Applied Surface Science, 2019, 493: 1142-1149.
|
| [17] |
XING Mingyang, ZHOU Yi, DONG Chunyang, et al. Modulation of the reduction potential of TiO2- x by fluorination for efficient and selective CH4 generation from CO2 photoreduction[J]. Nano Letters, 2018, 18(6): 3384-3390.
|
| [18] |
WANG Jin, XIA Tong, WANG Lei, et al. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution[J]. Angewandte Chemie International Edition, 2018, 57(50): 16447-16451.
|