化工进展 ›› 2025, Vol. 44 ›› Issue (4): 2141-2155.DOI: 10.16085/j.issn.1000-6613.2024-0604
陈积权1(
), 任鹏炜2, 朱日广3, 陈思思1, 唐兴颖3(
), 覃新宇4(
), 杨健乔5
收稿日期:2024-04-10
修回日期:2024-05-20
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
唐兴颖,覃新宇
作者简介:陈积权(2000—),男,硕士研究生,研究方向为超临界水氧化防腐材料。E-mail:2215393002@st.gxu.edu.cn。
基金资助:
CHEN Jiquan1(
), REN Pengwei2, ZHU Riguang3, CHEN Sisi1, TANG Xingying3(
), QIN Xinyu4(
), YANG Jianqiao5
Received:2024-04-10
Revised:2024-05-20
Online:2025-04-25
Published:2025-05-07
Contact:
TANG Xingying, QIN Xinyu
摘要:
超临界水氧化(SCWO)技术是一种高效环保的高级氧化技术,被广泛应用于处理各种高浓度污染物,但在处理过程中会产生酸性物质导致设备腐蚀,严重限制了SCWO的发展。镍基合金具有优异的高温强度、抗氧化和抗腐蚀性能,是制备超临界水氧化设备的候选材料之一,探究其在SCWO中的腐蚀现象和机理对技术的发展具有重要的意义。本文回顾了在含不同侵蚀性离子(O2-、Cl-、S2-、PO
中图分类号:
陈积权, 任鹏炜, 朱日广, 陈思思, 唐兴颖, 覃新宇, 杨健乔. 镍基合金在含侵蚀性离子的超临界水氧化中的腐蚀研究进展[J]. 化工进展, 2025, 44(4): 2141-2155.
CHEN Jiquan, REN Pengwei, ZHU Riguang, CHEN Sisi, TANG Xingying, QIN Xinyu, YANG Jianqiao. Corrosion of nickel-based alloys in supercritical water oxidation containing erosive ions: A review[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2141-2155.
| 侵蚀环境 | 侵蚀离子 | 侵蚀方式 | 现象 |
|---|---|---|---|
| O | O | 低浓度弱氧化 | 轻微局部腐蚀如点蚀、晶间腐蚀[ |
| 高浓度强氧化 | 膜剥落、点蚀和SCC [ | ||
| C1、O | Cl2、Cl- | 占据阴离子空位、活化氧化 | 点蚀、鼓泡、氧化膜开裂或脱落[ |
| Cl | Cl- | 穿透和溶解氧化膜 | 强点蚀、膜开裂和SCC[ |
| S | S2- | 产生硫化通道,产生H2、S2- | 裂纹、膜剥落[ |
| SO | 膜溶解,被还原为S2-、S | 点蚀、氧化膜剥落、均匀腐蚀[ | |
| S、O | O2-、S2- | 硫化、氧化、膜疏松 | 裂纹、点蚀、膜剥落[ |
| P | PO | 盐沉积、熔盐腐蚀、溶解氧化膜 | 钝化、晶间腐蚀、点蚀、膜脱落[ |
| P、O | O2-、PO | 低溶解盐、氧化 | 局部腐蚀、钝化、晶间腐蚀[ |
| P、S、Cl、O | DO、PO | 氧化、溶解、穿透氧化膜、硫化 | 磷酸盐缓蚀、强局部腐蚀、膜剥落、SCC、孔蚀、晶间腐蚀[ |
表1 侵蚀性离子在SCW中对镍基合金腐蚀的影响
| 侵蚀环境 | 侵蚀离子 | 侵蚀方式 | 现象 |
|---|---|---|---|
| O | O | 低浓度弱氧化 | 轻微局部腐蚀如点蚀、晶间腐蚀[ |
| 高浓度强氧化 | 膜剥落、点蚀和SCC [ | ||
| C1、O | Cl2、Cl- | 占据阴离子空位、活化氧化 | 点蚀、鼓泡、氧化膜开裂或脱落[ |
| Cl | Cl- | 穿透和溶解氧化膜 | 强点蚀、膜开裂和SCC[ |
| S | S2- | 产生硫化通道,产生H2、S2- | 裂纹、膜剥落[ |
| SO | 膜溶解,被还原为S2-、S | 点蚀、氧化膜剥落、均匀腐蚀[ | |
| S、O | O2-、S2- | 硫化、氧化、膜疏松 | 裂纹、点蚀、膜剥落[ |
| P | PO | 盐沉积、熔盐腐蚀、溶解氧化膜 | 钝化、晶间腐蚀、点蚀、膜脱落[ |
| P、O | O2-、PO | 低溶解盐、氧化 | 局部腐蚀、钝化、晶间腐蚀[ |
| P、S、Cl、O | DO、PO | 氧化、溶解、穿透氧化膜、硫化 | 磷酸盐缓蚀、强局部腐蚀、膜剥落、SCC、孔蚀、晶间腐蚀[ |
| 1 | LI Yanhui, WANG Shuzhong, YANG Jianqiao, et al. Corrosion characteristics of a nickel-base alloy C-276 in harsh environments[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19829-19835. |
| 2 | 贺文智, 李光明, 孔令照, 等. 基于腐蚀与盐堵塞问题的超临界水氧化研究进展[J]. 环境工程学报, 2007, 1(5): 1-6. |
| HE Wenzhi, LI Guangming, KONG Lingzhao, et al. Advance of SCWO in solving corrosion and salt-plugging[J]. Chinese Journal of Environmental Engineering, 2007, 1(5): 1-6. | |
| 3 | 徐东海, 王树众, 张峰, 等. 超临界水氧化技术中盐沉积问题的研究进展[J]. 化工进展, 2014, 33(4): 1015-1021. |
| XU Donghai, WANG Shuzhong, ZHANG Feng, et al. Current research status of salt deposition in supercritical water oxidation[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1015-1021. | |
| 4 | DE SOUZA Guilherme Botelho Meireles, PEREIRA Mariana Bisinotto, MOURÃO Lucas Clementino, et al. Supercritical water technology: An emerging treatment process for contaminated wastewaters and sludge[J]. Reviews in Environmental Science and Bio/Technology, 2022, 21(1): 75-104. |
| 5 | YAN Ze, Banu ÖRMECI, HAN You, et al. Supercritical water oxidation for treatment of wastewater sludge and recalcitrant organic contaminants[J]. Environmental Technology & Innovation, 2020, 18: 100728. |
| 6 | S V Prasad MYLAPILLI, REDDY Sivamohan N. Sub and supercritical water oxidation of pharmaceutical wastewater[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103165. |
| 7 | GONG Yanmeng, LU Jiaang, JIANG Weili, et al. Gasification of landfill leachate in supercritical water: Effects on hydrogen yield and tar formation[J]. International Journal of Hydrogen Energy, 2018, 43(51): 22827-22837. |
| 8 | BARNER H E, HUANG C Y, JOHNSON T, et al. Supercritical water oxidation: An emerging technology[J]. Journal of Hazardous Materials, 1992, 31(1): 1-17. |
| 9 | ZHANG Yishu, WANG Shuzhong, SONG Wenhan, et al. Characteristics of sodium sulfate deposition in hydrogen production from supercritical water gasification: A review[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29467-29482. |
| 10 | LYNGFELT Anders, BRINK Anders, Øyvind LANGØRGEN, et al. 11000h of chemical-looping combustion operation—Where are we and where do we want to go?[J]. International Journal of Greenhouse Gas Control, 2019, 88: 38-56. |
| 11 | GUO Shuwei, XU Donghai, LIANG Yu, et al. Corrosion characteristics of typical Ni-Cr alloys and Ni-Cr-Mo alloys in supercritical water: A review[J]. Industrial & Engineering Chemistry Research, 2020, 59(42): 18727-18739. |
| 12 | CHANG Kai-Hsiang, HUANG Jih-Hsuan, YAN Cunbin, et al. Corrosion behavior of alloy 625 in supercritical water environments[J]. Progress in Nuclear Energy, 2012, 57: 20-31. |
| 13 | FULGER M, OHAI D, MIHALACHE M, et al. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions[J]. Journal of Nuclear Materials, 2009, 385(2): 288-293. |
| 14 | REN X, SRIDHARAN K, ALLEN T R. Corrosion behavior of alloys 625 and 718 in supercritical water[J]. Corrosion, 2007, 63(7): 603-612. |
| 15 | SUN Chunwen, HUI Rob, QU Wei, et al. Progress in corrosion resistant materials for supercritical water reactors[J]. Corrosion Science, 2009, 51(11): 2508-2523. |
| 16 | ZHONG Li, XIAO Bo, SU Chao, et al. The oxidation behavior of nickel-based alloy Inconel 617 in supercritical water[J]. Materials and Corrosion, 2022, 73(7): 1132-1143. |
| 17 | REN Lu, DING Yun, CHENG Yanhai, et al. The microstructure evolving and element transport of Ni-based laser-cladding layer in supercritical water[J]. Corrosion Science, 2022, 198: 110112. |
| 18 | CHEN Zhong, TONG Kun, XU Fenglin, et al. Development of supercritical water oxidation technology for application to hazardous waste treatment: An extreme case study[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105296. |
| 19 | RODRIGUEZ David, CHIDAMBARAM Dev. Oxidation of stainless steel 316 and Nitronic 50 in supercritical and ultrasupercritical water[J]. Applied Surface Science, 2015, 347: 10-16. |
| 20 | CHOUDHRY Kashif I, MAHBOUBI Shooka, BOTTON Gianluigi A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: Characterization of oxide scales on alloy 800H and stainless steel 316[J]. Corrosion Science, 2015, 100: 222-230. |
| 21 | MERWIN Augustus, RODRIGUEZ David, CHIDAMBARAM Dev. Oxidation of superalloys in supercritical water[J]. ECS Transactions, 2014, 58(41): 15-24. |
| 22 | YANG Jianqiao, WANG Shuzhong, TANG Xingying, et al. Effect of low oxygen concentration on the oxidation behavior of Ni-based alloys 625 and 825 in supercritical water[J]. The Journal of Supercritical Fluids, 2018, 131: 1-10. |
| 23 | CHANG Kai-Hsiang, CHEN Shih-Ming, YEH Tsung-Kuang, et al. Effect of dissolved oxygen content on the oxide structure of alloy 625 in supercritical water environments at 700℃[J]. Corrosion Science, 2014, 81: 21-26. |
| 24 | ROYER Laurent, LEDOUX Xavier, MATHIEU Stéphane, et al. On the oxidation and nitridation of chromium at 1300℃[J]. Oxidation of Metals, 2010, 74(1): 79-92. |
| 25 | ASSELIN Edouard, ALFANTAZI Akram, ROGAK Steven. Corrosion of nickel-chromium alloys, stainless steel and niobium at supercritical water oxidation conditions[J]. Corrosion Science, 2010, 52(1): 118-124. |
| 26 | KRITZER P, BOUKIS N, DINJUS E. The corrosion of nickel-base alloy 625 in sub- and supercritical aqueous solutions of oxygen: A long time study[J]. Journal of Materials Science Letters, 1999, 18(22): 1845-1847. |
| 27 | ZHANG Naiqiang, XU Hong, LI Baorang, et al. Influence of the dissolved oxygen content on corrosion of the ferritic-martensitic steel P92 in supercritical water[J]. Corrosion Science, 2012, 56: 123-128. |
| 28 | Monika ŠÍPOVÁ, Daniela MARUŠÁKOVÁ, APARICIO Claudia, et al. A study on the corrosion behaviour of stainless steel 08Cr18Ni10Ti in supercritical water[J]. Corrosion Science, 2023, 211: 110853. |
| 29 | HUANG Xi, ZHAN Zixiong, ZHAO Qi, et al. Corrosion behavior of a dual-phase FeNiCrCuAl high entropy alloy in supercritical water[J]. Corrosion Science, 2022, 208: 110617. |
| 30 | TANG Xingying, WANG Shuzhong, XU Donghai, et al. Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18241-18250. |
| 31 | HOU Qiang, LIU Zhiyong, LI Chengtao, et al. Degradation of the oxide film formed on alloy 690TT in a high-temperature chloride solution[J]. Applied Surface Science, 2019, 467: 1104-1112. |
| 32 | KIMMEL A-C L, MALKOWSKI Thomas F, GRIFFITHS Steven, et al. High-temperature corrosion of Inconel®alloy 718, Haynes®282®alloy and CoW alloy1&2 in supercritical ammonia/ammonium chloride solution[J]. Journal of Crystal Growth, 2018, 498: 289-300. |
| 33 | YANG Jianqiao, WANG Shuzhong, XU Donghai, et al. Effect of ammonium chloride on corrosion behavior of Ni-based alloys and stainless steel in supercritical water gasification process[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19788-19797. |
| 34 | YANG Jianqiao, WANG Shuzhong, LI Yanhui, et al. Under-deposit corrosion of Ni-based alloy 825 and Fe-Ni based alloy 800 in supercritical water oxidation environment[J]. Corrosion Science, 2020, 167: 108493. |
| 35 | FUJISAWA R, SAKAIHARA M, KURATA Y, et al. Corrosion behaviour of nickel base alloys and 316 stainless steel in supercritical water under alkaline conditions[J]. Corrosion Engineering, Science and Technology, 2005, 40(3): 244-248. |
| 36 | KRITZER Peter. Corrosion in high-temperature and supercritical water and aqueous solutions: A review[J]. The Journal of Supercritical Fluids, 2004, 29(1/2): 1-29. |
| 37 | KAI W, LEE C H, LEE T W, et al. Sulfidation behavior of inconel 738 superalloy at 500—900℃[J]. Oxidation of Metals, 2001, 56: 51-71. |
| 38 | LI Yanhui, WANG Shuzhong, TANG Xingying, et al. Effects of sulfides on the corrosion behavior of Inconel 600 and incoloy 825 in supercritical water[J]. Oxidation of Metals, 2015, 84(5): 509-526. |
| 39 | CHEN Hongsheng, KIM Sung Hwan, KIM Chaewon, et al. Corrosion behaviors of four stainless steels with similar chromium content in supercritical carbon dioxide environment at 650℃[J]. Corrosion Science, 2019, 156: 16-31. |
| 40 | 张洁, 曲积钰, 卢金玲, 等. 亚临界/超临界水条件下镍基合金(Incoloy800, 825, 625)的硫化腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898. |
| ZHANG Jie, QU Jiyu, LU Jinling, et al. Sulfidation corrosion behavior of nickel-based alloys (Incoloy800, 825 and 625) in sub/supercritical water[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 892-898. | |
| 41 | ZHANG Jie, LI Bowen, LI Yanhui, et al. Effect of sulfide on corrosion behavior of stainless steel 316SS and hastelloy C276 in sub/supercritical water[J]. International Journal of Hydrogen Energy, 2021, 46(42): 22222-22233. |
| 42 | KRITZER P, BOUKIS N, DINJUS E. The corrosion of alloy 625 (NiCr22Mo9Nb; 2.4856) in high-temperature, high-pressure aqueous solutions of phosphoric acid and oxygen. Corrosion at sub- and supercritical temperatures[J]. Materials and Corrosion, 1998, 49(11): 831-839. |
| 43 | MA Zhijiang, XU Donghai, GUO Shuwei, et al. Corrosion properties and mechanisms of austenitic stainless steels and Ni-base alloys in supercritical water containing phosphate, sulfate, chloride and oxygen[J]. Oxidation of Metals, 2018, 90(5): 599-616. |
| 44 | TANG Xingying, WANG Shuzhong, QIAN Lili, et al. Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen[J]. Chemical Engineering Research and Design, 2015, 100: 530-541. |
| 45 | 欧美琼, 刘扬, 查向东, 等. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为[J]. 金属学报, 2016, 52(12): 1557-1564. |
| Meiqiong OU, LIU Yang, ZHA Xiangdong, et al. Corrosion behavior of a new nickel base alloy in supercritical water containing diverse ions[J]. Acta Metallurgica Sinica, 2016, 52(12): 1557-1564. | |
| 46 | SPIEGEL M, GRABKE H J. High temperature corrosion of high alloy steels in simulated waste incineration environments[J]. Materials and Corrosion, 1996, 47(4): 179-189. |
| 47 | XU Tiantian, WANG Shuzhong, TANG Xingying, et al. Corrosion mechanism of Inconel 600 in oxidizing supercritical aqueous systems containing multiple salts[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23046-23056. |
| 48 | GUO Shuwei, XU Donghai, JIANG Guanyu, et al. Corrosion behavior and mechanism of Ni-based alloys hastelloy C2000 and inconel 740 in chloride-containing supercritical water oxidation[J]. Journal of Alloys and Compounds, 2022, 907: 164452. |
| 49 | KRITZER P, BOUKIS N, DINJUS E. Corrosion of alloy 625 in high-temperature, high-pressure sulfate solutions[J]. Corrosion, 1998, 54(9): 689-699. |
| 50 | LI Yanhui, DING Shaoming, BAI Zhouyang, et al. Corrosion characteristics and mechanisms of typical iron/nickel-based alloys in reductive supercritical water environments containing sulfides[J]. The Journal of Supercritical Fluids, 2022, 187: 105599. |
| 51 | LIN Zitao, REN Pengwei, ZHU Riguang, et al. The effect of molten phosphate on corrosion of 316 stainless steel, alloy 625, and titanium TA8 in supercritical water oxidation conditions[J]. Materials, 2023, 16(1): 395. |
| 52 | FRIEDRICH C, KRITZER P, BOUKIS N, et al. The corrosion of tantalum in oxidizing sub- and supercritical aqueous solutions of HCl, H2SO4 and H3PO4 [J]. Journal of Materials Science, 1999, 34(13): 3137-3141. |
| 53 | TAN L, REN X, SRIDHARAN K, et al. Corrosion behavior of Ni-based alloys for advanced high temperature water-cooled nuclear plants[J]. Corrosion Science, 2008, 50(11): 3056-3062. |
| 54 | SHI Hong, GAO Zhigang, FAN Zhongbiao, et al. Corrosion behavior of alloy C-276 in supercritical water[J]. Advances in Materials Science and Engineering, 2018, 2018: 1027640. |
| 55 | GUO Shuwei, XU Donghai, JIANG Guanyu, et al. High-temperature corrosion of Fe-Ni-based alloy HR6W, Ni-based alloys Haynes 282 and Inconel 740 in supercritical water at 450℃ and 25MPa[J]. Journal of Alloys and Compounds, 2021, 878: 160350. |
| 56 | LIU Jinhua, TAN Yueming, WANG Yuan, et al. Stress corrosion cracking behavior of 310S in supercritical water with different oxygen concentrations[J]. Nuclear Science and Techniques, 2018, 29(5): 76. |
| 57 | ZHOU Hongyi, TIAN Zhao, LIAO Chuanhua. Corrosion behaviour characterisation of 316L stainless steel and Inconel 625 in supercritical water containing hydrochloric acid and high oxygen[J]. Corrosion Engineering, Science and Technology, 2022, 57(7): 640-647. |
| 58 | Sang-Ha SON, LEE Jae-Hyuk, LEE Chang-Ha. Corrosion phenomena of alloys by subcritical and supercritical water oxidation of 2-chlorophenol[J]. The Journal of Supercritical Fluids, 2008, 44(3): 370-378. |
| 59 | ZHU Zhongliang, LI Yuyang, MA Chenhao, et al. The corrosion behavior of nickel-based alloy Inconel 740H in supercritical water[J]. Corrosion Science, 2021, 192: 109848. |
| 60 | GUO Shuwei, XU Donghai, JIANG Guanyu, et al. Sulfate corrosion and phosphate passivation of Ni-based alloy in supercritical water[J]. The Journal of Supercritical Fluids, 2022, 184: 105564. |
| 61 | ASSELIN E, ALFANTAZI A, ROGAK S. Thermodynamics of the corrosion of alloy 625 supercritical water oxidation reactor tubing in ammoniacal sulfate solution[J]. Corrosion, 2008, 64(4): 301-314. |
| 62 | GUO Shuwei, XU Donghai, MA Zhijiang, et al. Early corrosion characterization of 316 stainless steel (passivated in supercritical water with Na3PO4) in subcritical water containing oxygen and NaCl[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 1919-1928. |
| 63 | GUO Shuwei, XU Donghai, LI Yanhui, et al. Corrosion characteristics and mechanisms of typical Ni-based corrosion-resistant alloys in sub- and supercritical water[J]. The Journal of Supercritical Fluids, 2021, 170: 105138. |
| 64 | GHULE Bhagwat, SUNDARESAN C, VIJAYSHANKAR Dandapani, et al. Oxidation behaviour of Ni-base superalloys in supercritical water: A review[J]. Journal of the Indian Institute of Science, 2022, 102(1): 351-389. |
| 65 | LI Yanhui, XU Tongtong, WANG Shuzhong, et al. Characterization of oxide scales formed on heating equipment in supercritical water gasification process for producing hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29508-29515. |
| 66 | ZHANG Zhiming, WANG Jianqiu, HAN Enhou, et al. Analysis of surface oxide films formed in hydrogenated primary water on alloy 690TT samples with different surface states[J]. Journal of Materials Science & Technology, 2014, 30(12): 1181-1192. |
| 67 | XU Shuai, LONG Fei, PERSAUD Suraj Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600℃ supercritical water and the effect of pre-oxidation[J]. Corrosion Science, 2020, 165: 108380. |
| 68 | LI Yanhui, WANG Shuzhong, SUN Panpan, et al. Investigation on early formation and evolution of oxide scales on ferritic-martensitic steels in supercritical water[J]. Corrosion Science, 2018, 135: 136-146. |
| 69 | YANG Jie, LI Yanhui, XU Aoni, et al. The electrochemical properties of alloy 690 in simulated pressurized water reactor primary water: Effect of temperature[J]. Journal of Nuclear Materials, 2019, 518: 305-315. |
| 70 | LI Yanhui, XU Tongtong, WANG Shuzhong, et al. Predictions and analyses on the growth behavior of oxide scales formed on ferritic-martensitic in supercritical water[J]. Oxidation of Metals, 2019, 92(1): 27-48. |
| 71 | MACDONALD Digby D. The history of the point defect model for the passive state: A brief review of film growth aspects[J]. Electrochimica Acta, 2011, 56(4): 1761-1772. |
| 72 | LI Yanhui, BAI Zhouyang, DING Shaoming, et al. Electrochemical techniques and mechanisms for the corrosion of metals and alloys in sub- and supercritical aqueous systems[J]. The Journal of Supercritical Fluids, 2023, 194: 105835. |
| 73 | LI Yanhui, MACDONALD Digby D, YANG Jie, et al. Point defect model for the corrosion of steels in supercritical water: Part Ⅰ, film growth kinetics[J]. Corrosion Science, 2020, 163: 108280. |
| 74 | SUN Li, ZHAO Tianyu, QIU Jie, et al. Point defect model for passivity breakdown on hyper-duplex stainless steel 2707 in solutions containing bromide at different temperatures[J]. Corrosion Science, 2022, 194: 109959. |
| 75 | MACHET A, GALTAYRIES A, ZANNA S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy[J]. Electrochimica Acta, 2004, 49(22/23): 3957-3964. |
| 76 | CHEN Hongsheng, WANG Haibo, SUN Qingzhu, et al. Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor[J]. Corrosion Science, 2018, 145: 90-99. |
| 77 | SUN Mingcheng, WU Xinqiang, ZHANG Zhaoen, et al. Analyses of oxide films grown on alloy 625 in oxidizing supercritical water[J]. The Journal of Supercritical Fluids, 2008, 47(2): 309-317. |
| 78 | ZHONG Xiangyu, HAN Enhou, WU Xinqiang. Corrosion behavior of alloy 690 in aerated supercritical water[J]. Corrosion Science, 2013, 66: 369-379. |
| 79 | SANCHEZ Rainier Garcia, HUANG X, LIU P. Effect of water density/pressure on the corrosion behavior of 304 and 310 stainless steels[J]. Oxidation of Metals, 2018, 89(1): 165-182. |
| 80 | XU P, ZHAO L Y, SRIDHARAN K, et al. Oxidation behavior of grain boundary engineered alloy 690 in supercritical water environment[J]. Journal of Nuclear Materials, 2012, 422(1/2/3): 143-151. |
| 81 | ZHANG K, LIU M M, LIU S L, et al. Hot corrosion behaviour of a cobalt-base super-alloy K40S with and without NiCrAlYSi coating[J]. Corrosion Science, 2011, 53(5): 1990-1998. |
| 82 | WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1/2/3): 176-201. |
| 83 | MACDONALD Digby D, KRIKSUNOV Leo B. Probing the chemical and electrochemical properties of SCWO systems[J]. Electrochimica Acta, 2001, 47(5): 775-790. |
| 84 | HUANG Xi, SHEN Yinzhong. Oxidation behavior of an 11Cr ferritic-martensitic steel after Ar-ions irradiation in supercritical water[J]. Journal of Nuclear Materials, 2015, 461: 1-9. |
| 85 | HUANG Xiao, GUZONAS D. Characterization of Ni-20Cr-5Al model alloy in supercritical water[J]. Journal of Nuclear Materials, 2014, 445(1/2/3): 298-307. |
| 86 | CHEN Yun, SRIDHARAN Kumar, ALLEN Todd. Corrosion behavior of ferritic-martensitic steel T91 in supercritical water[J]. Corrosion Science, 2006, 48(9): 2843-2854. |
| 87 | BEHNAMIAN Yashar, MOSTAFAEI Amir, KOHANDEHGHAN Alireza, et al. A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800℃[J]. Corrosion Science, 2016, 106: 188-207. |
| 88 | MOHAMMADI T, HUANG X. Effect of Al and Ti addition on performance of stainless steel 310 in supercritical water[J]. Corrosion Engineering, Science and Technology, 2015, 50(4): 292-302. |
| 89 | BERTHOD Patrice, ARANDA Lionel, MATHIEU Stéphane, et al. Influence of water vapour on the rate of oxidation of a Ni-25%Cr alloy at high temperature[J]. Oxidation of Metals, 2013, 79(5): 517-527. |
| 90 | YANG Jianqiao, WANG Shuzhong, XU Donghai. High temperature oxidation of alloy 617, 740, HR6W and Sanicro 25 in supercritical water at 650℃[J]. Corrosion Engineering, Science and Technology, 2020, 55(3): 196-204. |
| 91 | KUANG Wenjun, WU Xinqiang, HAN Enhou, et al. The mechanism of oxide film formation on alloy 690 in oxygenated high temperature water[J]. Corrosion Science, 2011, 53(11): 3853-3860. |
| 92 | GUO Shuwei, XU Donghai, WEI Ning, et al. Oxidation processes and involved chemical reactions of corrosion-resistant alloys in supercritical water[J]. Industrial & Engineering Chemistry Research, 2020,59(22): 10278-10288. |
| 93 | YIN Kaiju, QIU Shaoyu, TANG Rui, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water[J]. The Journal of Supercritical Fluids, 2009, 50(3): 235-239. |
| 94 | SAADI Sara AL, YI Yongsun, CHO Pyungyeon, et al. Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution[J]. Corrosion Science, 2016, 111: 720-727. |
| 95 | LU W M, PAN T J, ZHANG K, et al. Accelerated corrosion of five commercial steels under a ZnCl2-KCl deposit in a reducing environment typical of waste gasification at 673—773K[J]. Corrosion Science, 2008, 50(7): 1900-1906. |
| 96 | BONDARENKO G V, GORBATY Yu E. In situ Raman spectroscopic study of sulfur-saturated water at 1000bar between 200 and 500℃[J]. Geochimica et Cosmochimica Acta, 1997, 61(7): 1413-1420. |
| 97 | LABRANCHE M, GARRATT-REED A, YUREK G J. Early stages of the oxidation of chromium in H2-H2O-H2S gas mixtures[J]. Journal of the Electrochemical Society, 1983, 130(12): 2405-2413. |
| 98 | SHEN Yuanyuan, DONG Yaohua, LI Hengding, et al. Corrosion resistance of Cu-Ni-Si alloy under high-temperature, high-pressure H2S and Cl- environments[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 1040-1048. |
| 99 | SUN Mingcheng, WU Xinqiang, ZHANG Zhaoen, et al. Oxidation of 316 stainless steel in supercritical water[J]. Corrosion Science, 2009, 51(5): 1069-1072. |
| 100 | BAXTER D J, NATESAN K. Breakdown of chromium oxide scales in sulfur-containing environments at elevated temperatures[J]. Oxidation of Metals, 1989, 31(3): 305-323. |
| 101 | 王琳琳, 侯坤磊, 查向东, 等. 几种合金在450℃/23MPa超临界水氧化环境中腐蚀行为研究[J]. 稀有金属材料与工程, 2024, 53(1): 204-214. |
| WANG Linlin, HOU Kunlei, ZHA Xiangdong, et al. Corrosion behavior of several alloys in supercritical water oxidation environment at 450℃/23MPa[J]. Rare Metal Materials and Engineering, 2024, 53(1): 204-214. | |
| 102 | MARRONE Philip A, HODES Marc, SMITH Kenneth A, et al. Salt precipitation and scale control in supercritical water oxidation: Part B: Commercial/full-scale applications[J]. The Journal of Supercritical Fluids, 2004, 29(3): 289-312. |
| 103 | VADILLO Violeta, Jezabel SÁNCHEZ-ONETO, PORTELA Juan Ramón, et al. Problems in supercritical water oxidation process and proposed solutions[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7617-7629. |
| 104 | WANG Jiaming, YANG Haodong, DU Min, et al. Corrosion mechanism of 5083 aluminum alloy in seawater containing phosphate[J]. Journal of Ocean University of China, 2021, 20(2): 372-382. |
| 105 | YANG Jianqiao, SUN Jiyuan, BAI Shuyuan, et al. Effect of oxygen concentration on the corrosion behavior of Cr-coated Ni alloy in supercritical water oxidation environment[J]. The Journal of Supercritical Fluids, 2022, 191: 105783. |
| 106 | SELVIG A, HUANG X, KIM D J, et al. Surface oxide formation on IN625 and plasma sprayed NiCrAlY after high density and low density supercritical water testing[J]. Materials and Corrosion, 2014, 65(8): 768-777. |
| 107 | ZHANG Zhidong, PAN Yuelong, GUO Hao, et al. Fabrication and supercritical water corrosion resistance of TiN/TiNC/Al2O3 multilayer coating on inconel 625 alloy by CVD method[J]. Materials, 2022, 15(21): 7670. |
| 108 | MANDAPAKA Kiran K, CAHYADI Rico S, YALISOVE Steven, et al. Corrosion behavior of ceramic-coated ZIRLOTM exposed to supercritical water[J]. Journal of Nuclear Materials, 2018, 498: 495-504. |
| 109 | PAN Yuelong, GUO Hao, ZHANG Xueling, et al. Preparation of a thick NiAl/Al2O3 coating by embedding method and its corrosion resistance under supercritical water environment[J]. Ceramics International, 2023, 49(7): 10354-10359. |
| 110 | REN Lu, CHENG Yanhai, WANG Shuai, et al. Oxidation behavior of the supercritical water on the ternary Ni-W-P coating[J]. Chemical Engineering Journal, 2019, 370: 1388-1406. |
| 111 | CONG Shuo, LIU Zhu, DANG Ying, et al. Effects of cold work on the corrosion behavior of alloy 800H exposed to aerated supercritical water[J]. Journal of Nuclear Materials, 2022, 559: 153408. |
| 112 | PAYET Mickaël, MARCHETTI Loïc, TABARANT Michel, et al. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation[J]. Corrosion Science, 2015, 100: 47-56. |
| 113 | TAN L, SRIDHARAN K, ALLEN T R. The effect of grain boundary engineering on the oxidation behavior of incoloy alloy 800H in supercritical water[J]. Journal of Nuclear Materials, 2006, 348(3): 263-271. |
| [1] | 顾旭波, 廖传华, 王常青. 超临界水氧化能量回收系统的设计优化[J]. 化工进展, 2022, 41(9): 5094-5102. |
| [2] | 王曼, 席晓丽, 王亚楠, 唐康尧. 典型合金循环利用研究进展及挑战[J]. 化工进展, 2021, 40(10): 5270-5280. |
| [3] | 彭志刚, 张健, 邹长军, 陈大钧, 郑勇. 一种环境响应型水泥石的抗CO2腐蚀性能[J]. 化工进展, 2017, 36(05): 1953-1959. |
| [4] | 李艳辉, 王树众, 孙盼盼, 杨闯, 王来升, 张拓, 郭洋. 湿式氧化降解高氯化工废水实验研究及经济性分析[J]. 化工进展, 2017, 36(05): 1906-1913. |
| [5] | 徐东海,王树众,张峰,黄传宝,唐兴颖,郭洋. 超临界水氧化技术中盐沉积问题的研究进展[J]. 化工进展, 2014, 33(04): 1015-1021. |
| [6] | 刘春明,董秀芹,张敏华. 超临界水氧化技术处理工业废水的研究进展 [J]. 化工进展, 2011, 30(8): 1841-. |
| [7] | 张凤鸣,陈守燕,徐纯燕,陈桂芳,马春元. 基于蒸发壁反应器的超临界水氧化技术研究进展 [J]. 化工进展, 2011, 30(8): 1643-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |