| [1] |
CAPURSO T, STEFANIZZI M, TORRESI M, et al. Perspective of the role of hydrogen in the 21st century energy transition[J]. Energy Conversion and Management, 2022, 251: 114898.
|
| [2] |
何阳东, 常宏岗, 王丹, 等. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280.
|
|
HE Yangdong, CHANG Honggang, WANG Dan, et al. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280.
|
| [3] |
覃莉, 何阳东, 曾正荣, 等. 天然气氢炭联产工艺研究进展[J]. 石油与天然气化工, 2023, 52(4): 48-55, 65.
|
|
QIN Li, HE Yangdong, ZENG Zhengrong, et al. Research progress of hydrogen-carbon co-production process of natural gas[J]. Chemical Engineering of Oil & Gas, 2023, 52(4): 48-55, 65.
|
| [4] |
许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99.
|
|
XU Chuanbo, LIU Jianguo. Hydrogen energy storage in China’s new-type power system: Application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99.
|
| [5] |
单彤文, 宋鹏飞, 李又武, 等. 制氢、储运和加注全产业链氢气成本分析[J]. 天然气化工(C1化学与化工), 2020, 45(1): 85-90, 96.
|
|
SHAN Tongwen, SONG Pengfei, LI Youwu, et al. Cost analysis of hydrogen from the perspective of the whole industrial chain of production, storage, transportation and refueling[J]. Natural Gas Chemical Industry, 2020, 45(1): 85-90, 96.
|
| [6] |
ZHU Lin, HE Yangdong, LI Luling, et al. Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission[J]. Energy, 2018, 149: 34-46.
|
| [7] |
张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
|
|
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
|
| [8] |
李雅欣, 何阳东, 刘韬, 等. 甲烷裂解制氢工艺研究进展及技术经济性对比分析[J]. 石油与天然气化工, 2022, 51(3): 38-46, 55.
|
|
LI Yaxin, HE Yangdong, LIU Tao, et al. Research progress and comparative techno-economic analysis of methane pyrolysis technology for hydrogen production[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 38-46, 55.
|
| [9] |
HE Yangdong, JING Xingsheng, QIN Li, et al. Insights into carbon formation over molten salt-promoted NiO/Al2O3 during methane pyrolysis[J]. Carbon Letters, 2024, 34(5): 1471-1480.
|
| [10] |
覃莉, 何阳东, 陈昌武, 等. 熔融法天然气裂解制石墨烯工艺及应用研究[J]. 石油与天然气化工, 2024, 53 (5): 25-32.
|
|
QIN Li, HE Yangdong, CHEN Changwu, et al. Research on the process and application of natural gas cracking to graphene by the melting method[J]. Chemical Engineering of Oil & Gas, 2024, 53(5): 25-32.
|
| [11] |
KANG Dohyung, PALMER Clarke, MANNINI Davide, et al. Catalytic methane pyrolysis in molten alkali chloride salts containing iron[J]. ACS Catalysis, 2020, 10(13): 7032-7042.
|
| [12] |
周莹, 詹俊杰, 黄泽皑, 等. 熔融介质裂解天然气制氢和高值碳研究进展[J]. 油气与新能源, 2023, 35(2): 80-88.
|
|
ZHOU Ying, ZHAN Junjie, HUANG Zeai, et al. Research progress of melting medium cracking hydrogen production via natural gas and high-value carbon[J]. Petroleum and New Energy, 2023, 35(2): 80-88.
|
| [13] |
WANG K, LI W S, ZHOU X P. Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium[J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 153-157.
|
| [14] |
Chester UPHAM D, AGARWAL Vishal, KHECHFE Alexander, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science, 2017, 358(6365): 917-921.
|
| [15] |
PALMER Clarke, TARAZKAR Maryam, KRISTOFFERSEN Henrik H, et al. Methane pyrolysis with a molten Cu-Bi alloy catalyst[J]. ACS Catalysis, 2019, 9(9): 8337-8345.
|
| [16] |
AO Dongyi, TANG Yongliang, XU Xiaofeng, et al. Highly conductive PDMS composite mechanically enhanced with 3D-graphene network for high-performance EMI shielding application[J]. Nanomaterials, 2020, 10(4): 768.
|
| [17] |
HE Yangdong, SONG Bin, JING Xingsheng, et al. Low-carbon hydrogen production via molten salt methane pyrolysis with chemical looping combustion: Emission reduction potential and techno-economic assessment[J]. Fuel Processing Technology, 2023, 247: 107778.
|