化工进展 ›› 2024, Vol. 43 ›› Issue (7): 4015-4031.DOI: 10.16085/j.issn.1000-6613.2023-0940
• 资源与环境化工 • 上一篇
收稿日期:
2023-06-07
修回日期:
2023-10-25
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
魏茜
作者简介:
林翔(2000—),男,硕士研究生,研究方向为复杂矿物浮选分离。E-mail:llxxlin@163.com。
基金资助:
LIN Xiang(), JIAO Fen, WEI Qian(), ZHANG Zhengquan
Received:
2023-06-07
Revised:
2023-10-25
Online:
2024-07-10
Published:
2024-08-14
Contact:
WEI Qian
摘要:
随着锌资源开发利用的深入,低品位难选氧化锌矿成为锌的重要来源,菱锌矿作为分布最多的典型氧化锌矿,是锌的重要矿产来源。本文详细介绍了菱锌矿重要的浮选手段——表面硫化浮选,阐述了硫化浮选的作用机理,解释了菱锌矿硫化过程中化学吸附、化学反应以及详细阐述菱锌矿硫化过程中沉淀-溶解反应机理,指出硫化过程是硫化层的沉淀与氧化层脱落的动态平衡过程,成核过程为受到以溶度积为主要驱动力所发生的非均质成核,该过程不同阶段硫化速度随时间而变化。本文列举了浮选过程中矿浆pH、硫化时间、硫化温度等因素对沉淀-溶解硫化的影响方式。同时指出高效强化硫化与绿色硫化是菱锌矿硫化浮选未来研究的重中之重,通过添加药剂进行硫化的高效强化能有效减少硫化钠的用量,通过开发绿色有机硫化剂来减少硫化钠等无机硫化剂的使用,降低选矿废水的污染以及处理难度,最后点明硫化浮选在当前乃至将来都是菱锌矿有效分选的重要方法。
中图分类号:
林翔, 焦芬, 魏茜, 张政权. 菱锌矿硫化浮选机理及影响因素研究进展[J]. 化工进展, 2024, 43(7): 4015-4031.
LIN Xiang, JIAO Fen, WEI Qian, ZHANG Zhengquan. Research progress of sulfidation flotation mechanism and influencing factors of smithsonite[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4015-4031.
时间/min | 硫组分剩余浓度/×10-5mol·L-1 |
---|---|
1 | 31.5 |
3 | 22.4 |
6 | 16.6 |
10 | 14.6 |
15 | 13.2 |
20 | 12.3 |
30 | 12.1 |
表1 5×10-4原始Na2S·9H2O浓度下矿浆中S浓度随硫化时间的变化[40]
时间/min | 硫组分剩余浓度/×10-5mol·L-1 |
---|---|
1 | 31.5 |
3 | 22.4 |
6 | 16.6 |
10 | 14.6 |
15 | 13.2 |
20 | 12.3 |
30 | 12.1 |
1 | 刘红召, 杨卉芃, 冯安生. 全球锌矿资源分布及开发利用[J]. 矿产保护与利用, 2017(1): 113-118. |
LIU Hongzhao, YANG Huipeng, FENG Ansheng. The distribution and utilization of global zinc resource[J]. Conservation and Utilization of Mineral Resources, 2017(1): 113-118. | |
2 | MOHR Steve, GIURCO Damien, RETAMAL Monique, et al. Global projection of lead-zinc supply from known resources[J]. Resources, 2018, 7(1): 17. |
3 | 潘志君, 夏鹏, 朱清, 等. 中国锌矿资源开发利用形势分析[J]. 地球学报, 2021, 42(2): 258-264. |
PAN Zhijun, XIA Peng, ZHU Qing, et al. An analysis of the development and utilization situation of China’s zinc ore resources[J]. Acta Geoscientica Sinica, 2021, 42(2): 258-264. | |
4 | YAN Lingyu, WANG Anjian, CHEN Qishen, et al. Dynamic material flow analysis of zinc resources in China[J]. Resources Conservation and Recycling, 2013, 75: 23-31. |
5 | 黄斌, 单勇, 孙广周, 等. 兰坪氧化铅锌矿选矿试验研究[J]. 矿产综合利用, 2018(2): 42-46, 24. |
HUANG Bin, SHAN Yong, SUN Guangzhou, et al. Experimental research on beneficiation of lanping’s oxide lead-zinc ore[J]. Multipurpose Utilization of Mineral Resources, 2018(2): 42-46, 24. | |
6 | 周娟, 廖亚龙, 李冰洁, 等. 多金属复杂硫化铜矿中有价金属的分离研究现状与进展[J]. 化工进展, 2015, 34(1): 252-257. |
ZHOU Juan, LIAO Yalong, LI Bingjie, et al. Valuable metals extraction from complex multi-metal copper sulfide ore[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 252-257. | |
7 | 刘殿文, 李佳磊, 刘瑞增, 等. 典型氧化铜铅锌矿物浮选的硫化及其强化研究新进展[J]. 中国科学基金, 2021, 35(6): 885-894. |
LIU Dianwen, LI Jialei, LIU Ruizeng, et al. Sulfidization mechanism and its enhancement of typical oxidized minerals of base metals: A recent review[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6): 885-894. | |
8 | 陈建华. 浮选配位化学原理[M]. 北京: 科学出版社, 2021: 89. |
CHEN Jianhua. Coordination chemistry of flotation[M]. Beijing: Science Press, 2021: 89. | |
9 | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J].化工进展, 2023, 42(S1): 536-541. |
LI Huaquan, WANG Minghua, QIU Guibao. Behavior of sulfuric acid acidolysis of perovskite concentrates[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 536-541. | |
10 | 张明焱, 刘燕, 张雪婷, 等. 非贵金属双功能催化剂在锌空气电池研究进展[J].化工进展, 2023, 42(S1): 276-286. |
ZHANG Mingyan, LIU Yan, ZHANG Xueting, et al. Research progress of non-noble metal bifunctional catalysts in zinc air batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. | |
11 | HOSSEINI S H, FORSSBERG E. Adsorption studies of smithsonite flotation using dodecylamine and oleic acid[J]. Mining, Metallurgy & Exploration, 2006, 23(2): 87-96. |
12 | 王纪镇, 孙兆辉, 白俊智. 菱锌矿晶体各向异性与表面性质研究[J]. 矿产保护与利用, 2021, 41(2): 1-6. |
WANG Jizhen, SUN Zhaohui, BAI Junzhi. Research on crystal anisotropy and surface properties of smithsonite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 1-6. | |
13 | EJTEMAEI Majid, GHARABAGHI Mahdi, IRANNAJAD Mehdi. A review of zinc oxide mineral beneficiation using flotation method[J]. Advances in Colloid and Interface Science, 2014, 206: 68-78. |
14 | 刘诚, 冯其明, 张国范, 等. 油酸钠体系下碳酸钠对菱锌矿浮选行为影响及作用机理[J]. 中国有色金属学报, 2017, 27(11): 2379-2384. |
LIU Cheng, FENG Qiming, ZHANG Guofan, et al. Effect of sodium carbonate on flotation behavior of smithsonite and its mechanism in presence of sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(11): 2379-2384. | |
15 | 陈晔, 唐箫琴, 陈建华, 等. 白铅矿(PbCO3)和菱锌矿(ZnCO3)硫化机理的DFT研究[J]. Trans Nonferrous Met Soc China: 1-29. |
CHEN Ye, TANG Xiaoqin, CHEN Jianhua, et al.DFT study of sulfidization mechanism of cerussite (PbCO3) and smithsonite (ZnCO3)[J]. Trans Nonferrous Met Soc China: 1-29. | |
16 | 孟祥彬, 高善彬, 胡胜, 等. 以单质硫为硫化介质的加氢催化剂间歇釜器外预硫化工艺[J]. 化工进展, 2015, 34(7): 1877-1881. |
MENG Xiangbin, GAO Shanbin, HU Sheng, et al. Presulfidation with sulphur for hydrogenation catalyst in a batch reactor[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 1877-1881. | |
17 | 李俏春, 郭恩惠, 李阳, 等. 类水滑石衍生锌基复合氧化物的硫化再生行为[J]. 化工进展, 2021, 40(11): 6278-6286. |
LI Qiaochun, GUO Enhui, LI Yang, et al. Desulfurization and regeneration behaviors of zinc-based composite oxides derived from hydrotalcite[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6278-6286. | |
18 | 高康, 张弦, 陈帅军, 等. 湿法脱硫中多硫离子分离方法的建立[J].化工进展, 2023, 43(4): 2210-2218. |
GAO Kang, ZHANG Xian, CHEN Shuaijun, et al. Establishment of separation method for polysulfide ions in wet desulfurization[J]. Chemical Industry and Engineering Progress, 2023, 43(4): 2210-2218. | |
19 | WU Dandan, WEN Shuming, DENG Jiushuai, et al. Study on the sulfidation behavior of smithsonite[J]. Applied Surface Science, 2015, 329: 315-320. |
20 | 王瑜, 刘建, 曾勇, 等. 不同硫组分在菱锌矿表面吸附的计算研究[J]. 有色金属工程, 2019, 9(6): 69-75, 83. |
WANG Yu, LIU Jian, ZENG Yong, et al. Study on the adsorption of different sulfur components on the surface of smithsonite[J]. Nonferrous Metals Engineering, 2019, 9(6): 69-75, 83. | |
21 | LIU Ruizeng, PEI Bin, LIU Zhicheng, et al. Improved understanding of the sulfidization mechanism in amine flotation of smithsonite: An XPS, AFM and UV-vis DRS study[J]. Minerals, 2020, 10(4): 370. |
22 | 沈智豪, 张谦, 方健, 等. 菱锌矿表面硫化研究进展[J]. 有色金属(选矿部分), 2021(1): 37-46, 59. |
SHEN Zhihao, ZHANG Qian, FANG Jian, et al. Research progress in surface sulfidization of smithsonite[J]. Nonferrous Metals (Mineral Processing Section), 2021(1): 37-46, 59. | |
23 | LI C L, BAI S J, DING Z, et al. Visual MINTEQ model, ToF-SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96: 53-62. |
24 | 曾鹏, 谢海云, 晋艳玲, 等. 典型铜铅锌氧化矿的强化硫化浮选研究进展[J]. 矿冶, 2022, 31(2): 22-28. |
ZENG Peng, XIE Haiyun, JIN Yanling, et al. Research progress of enhanced sulfide flotation for typical copper-lead-zinc oxide ores[J]. Mining and Metallurgy, 2022, 31(2): 22-28. | |
25 | 宋凯伟, 李佳磊, 蔡锦鹏, 等. 典型氧化铜铅锌矿物浮选的表面硫化研究进展[J]. 化工进展, 2018, 37(9): 3618-3628. |
SONG Kaiwei, LI Jialei, CAI Jinpeng, et al. A review on surface sulfidization of typical copper/lead/zinc oxide minerals flotation[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3618-3628. | |
26 | WANG Daowei, JIAO Fen, QIN Wenqing, et al. Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant[J]. Separation Science and Technology, 2018, 53(6): 961-972. |
27 | KHALEGHI Atefeh, SADRAMELI Seyed Mojtaba, MANTEGHIAN Mehrdad. Thermodynamic and kinetics investigation of homogeneous and heterogeneous nucleation[J]. Reviews in Inorganic Chemistry, 2020, 40(4): 167-192. |
28 | Zdeněk KOŽÍŠEK. Crystallization in small droplets: Competition between homogeneous and heterogeneous nucleation[J]. Journal of Crystal Growth, 2019, 522: 53-60. |
29 | LUO Bin, LIU Quanjun, DENG Jiushuai, et al. Characterization of sulfide film on smithsonite surface during sulfidation processing and its response to flotation performance[J]. Powder Technology, 2019, 351: 144-152. |
30 | TRINDADE PEDROSA Elisabete, KURGANSKAYA Inna, FISCHER Cornelius, et al. A statistical approach for analysis of dissolution rates including surface morphology[J]. Minerals, 2019, 9(8): 458. |
31 | FENG Qicheng, WEN Shuming. Formation of zinc sulfide species on smithsonite surfaces and its response to flotation performance[J]. Journal of Alloys and Compounds, 2017, 709: 602-608. |
32 | 李春龙, 吕超, 吴丹丹, 等. 氧化锌矿石选矿研究现状及发展趋势[J]. 矿产综合利用, 2018(6): 19-24. |
LI Chunlong, Chao LYU, WU Dandan, et al. Research status and developing trend of beneficiation of zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2018(6): 19-24. | |
33 | 胡岳华, 邱冠周, 袁诚, 等. 孔雀石/菱锌矿浮选溶液化学研究[J]. 有色金属, 1996(2): 40-44. |
HU Yuehua, QIU Guanzhou, YUAN Cheng, et al. Solution chemistry studies on flotation of malachite and smithsonite[J]. Nonferrous Metals Engineering, 1996(2): 40-44. | |
34 | 王美丽. 铅离子在菱锌矿表面的吸附特性及其对硫化浮选的影响机制[D]. 昆明: 昆明理工大学, 2022. |
WANG Meili. Adsorption characteristics of lead ions on the surface of smithsonite and its influence mechanism on sulfide flotation[D].Kunming: Kunming University of Science and Technology, 2022. | |
35 | LIU Jian, ZENG Yong, EJTEMAEI Majid, et al. DFT simulation of S-species interaction with smithsonite (001) surface: Effect of water molecule adsorption position[J]. Results in Physics, 2019, 15: 102575. |
36 | ZHAO Wenjuan, LIU Dianwen, FENG Qicheng, et al. DFT insights into the electronic properties and adsorption mechanism of HS–on smithsonite (101) surface[J]. Minerals Engineering, 2019, 141: 105846. |
37 | SHI Qing, ZHANG Guofan, FENG Qiming, et al. Effect of solution chemistry on the flotation system of smithsonite and calcite[J]. International Journal of Mineral Processing, 2013, 119: 34-39. |
38 | 王瑜. 菱锌矿表面硫化层稳定性及硫化机理研究[D]. 昆明: 昆明理工大学, 2019. |
WANG Yu. Study on the surface sulfidation layer stability and sulfidation mechanism of smithsonite[D]. Kunming: Kunming University of Science and Technology, 2019. | |
39 | 李春龙. 氯-铵组元体系下菱锌矿硫化行为及机理研究[D]. 昆明: 昆明理工大学, 2019. |
LI Chunlong. Sulfurization behavior and mechanism of smithsonite in chlorine-ammonium component system[D]. Kunming: Kunming University of Science and Technology, 2019. | |
40 | SCHOTT Jacques, POKROVSKY Oleg S, OELKERS Eric H. The link between mineral dissolution/precipitation kinetics and solution chemistry[M]//Thermodynamics and kinetics of water-rock interaction. De Gruyter, 2009: 207-258. |
41 | 谭凯旋, 张哲儒, 王中刚. 矿物溶解的表面化学动力学机理[J]. 矿物学报, 1994, 14(3): 207-214. |
TAN Kaixuan, ZHANG Zheru, WANG Zhonggang. The mechanism of surface chemical kinetics of dissolution of minerals[J]. Acta Mineralogica Sinica, 1994, 14(3): 207-214. | |
42 | EMMANUEL Simon. Modeling the effect of mineral armoring on the rates of coupled dissolution-precipitation reactions: Implications for chemical weathering[J]. Chemical Geology, 2022, 601: 120868. |
43 | ZENG Yong, LIU Jian, DONG Wenchao, et al. Study on sulfide layer attenuation behavior of smithsonite during sulfidization flotation[J]. Frontiers in Materials, 2020, 6: 347. |
44 | LUO Yuanjia, Leming OU, CHEN Jianhua, et al. Experimental and DFT study of the sulfidation of smithsonite: Impact of water and oxygen[J]. Applied Surface Science, 2022, 592: 153235. |
45 | WANG Mengtao, ZHANG Guofan, CHEN Yanfei, et al. Effect of dissolved oxygen on the sulfidization flotation of smithsonite [J]. Minerals Engineering, 2022, 186:107741. |
46 | 梁冬云, 张志雄, 许志华. 白铅矿、菱锌矿晶体化学性质与硫化行为[J]. 广东有色金属学报, 1992(2): 83-88. |
LIANG Dongyun, ZHANG Zhixiong, XU Zhihua. Relation between the crystallochemical properties and sulphurized behaviours of cerussite and smithsonite[J]. Journal of Guangdong Non-Ferrous Metals, 1992(2): 83-88. | |
47 | CAI Jinpeng, LIU Dianwen, SHEN Peilun, et al. Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation[J]. Minerals Engineering, 2021, 169: 106956. |
48 | SABO Mollie S, BECKINGHAM Lauren E. Porosity-permeability evolution during simultaneous mineral dissolution and precipitation[J]. Water Resources Research, 2021, 57(6): e2020WR029072. |
49 | 蔡锦鹏. 菱锌矿加温强化硫化机理研究[D]. 昆明: 昆明理工大学, 2019. |
CAI Jinpeng. Study on mechanism of intensified vulcanization of smithsonite by heating[D].Kunming: Kunming University of Science and Technology, 2019. | |
50 | 邱显扬, 李松平, 邓海波, 等. 菱锌矿加温硫化浮选动力学研究[J]. 有色金属(选矿部分), 2007(1): 24-26, 19. |
QIU Xianyang, LI Songping, DENG Haibo, et al. Study of heating surface sulfurized flotation dynamics of smithsonite[J]. Nonferrous Metals (Mineral Processing), 2007(1): 24-26, 19. | |
51 | 邱显扬, 李松平, 邓海波, 等. 菱锌矿加温硫化浮选药剂作用机理的研究[J]. 广东有色金属学报, 2006(4): 233-235. |
QIU Xianyang, LI Songping, DENG Haibo, et al. Study on the mechanism of reagent action in the process of heating surface sulferized flotation of smithsonite[J]. Journal of Guangdong Non-Ferrous Metals, 2006(4): 233-235. | |
52 | GUSH Jacqui. Flotation of oxide minerals by sulphidization - the development of a sulphidization control system for laboratory testwork[J]. Journal of the South African Institute of Mining and Metallurgy, 2005, 105: 193-198. |
53 | YANG Jing, CHEN Luzheng, WU Dandan, et al. Sodium sulfosalicylate activation mechanism on sulfidation flotation of smithsonite using dodecylamine as a collector[J]. Minerals Engineering, 2023, 192: 107987. |
54 | DUARTE Geraldo Magela Pereira, FERNANDES LIMA Rosa Malena. Quartz and hematite activation by Zn, Ca and Mg ions in the cationic flotation route for oxidized zinc ore[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(6): 720-727. |
55 | WU Zhiqiang, TANG Xiaoqin, CHEN Jianhua, et al. Influence of hydrated Ca2+ and Mg2+ complexes on the sulfidization of smithsonite: Density functional based tight binding ( D F T B + ) study[J]. Physicochemical Problems of Mineral Processing, 2022: 58(6): 156040. |
56 | LUO Yuanjia, Leming OU, ZHANG Guofan, et al. Unveiling the role of Ca ion in the sulfidation of smithsonite: A density functional theory study[J]. Journal of Molecular Liquids, 2022, 367: 120485. |
57 | LIU Zhongyi, LIU Jie, LIAO Yinfei, et al. Effect of unavoidable ion (Ca2+) in pulp on the dispersion behavior of fine smithsonite[J]. Molecules, 2022, 27(24): 9026. |
58 | CHEN Yanfei, ZHANG Guofan, WANG Mengtao, et al. Utilization of sodium carbonate to eliminate the adverse effect of Ca2+ on smithsonite sulphidisation flotation[J]. Minerals Engineering, 2019, 132: 121-125. |
59 | DENG Rongdong, HU Yuan, KU Jiangang, et al. Adsorption of Fe(Ⅲ) on smithsonite surfaces and implications for flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 308-315. |
60 | FENG Qicheng, ZHAO Guanghui, ZHANG Ga, et al. Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648:129119. |
61 | 刘长青. 氧化锌矿浮选体系金属离子对矿物浮选行为影响[D]. 徐州: 中国矿业大学, 2017. |
LIU Changqing. Effect of metal ion in zinc oxide ore flotation system on mineral flotation behavior[D].Xuzhou: China University of Mining and Technology, 2017. | |
62 | DENG Rongdong, WANG Yi, DUAN Wenting, et al. Induced crystallization of Pb2+ on smithsonite surface during sulfidation-xanthate flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129576. |
63 | LUO Bin, LIU Quanjun, DENG Jiushuai, et al. Determining the lead-sulfur species formed on smithsonite surfaces during lead-ion enhanced sulfidation processing[J]. Applied Surface Science, 2020, 506: 144628. |
64 | ZHANG Song, WEN Shuming, XIAN Yongjun, et al. Pb ion Pre-Modification enhances the sulfidization and floatability of smithsonite[J]. Minerals Engineering, 2021, 170: 107003. |
65 | 张松. 铅离子改性诱变硫化黄药浮选菱锌矿的机理研究[D]. 昆明: 昆明理工大学, 2020. |
ZHANG Song. Study on the mechanism of flotation of smithsonite with xanthate induced by lead ion modification[D].Kunming: Kunming University of Science and Technology, 2020. | |
66 | ZHAO Wenjuan, YANG Bin, LIU Dianwen, et al. Effect of copper ions on sulfidization flotation of smithsonite: Surface properties and adsorption mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129515. |
67 | 蒋世鹏, 张国范, 常永强, 等. 金属离子对菱锌矿硫化浮选影响研究[J]. 有色金属(选矿部分), 2016(2): 23-28. |
JIANG Shipeng, ZHANG Guofan, CHANG Yongqiang, et al. Effect of metal ions on sulfiding flotation of smithsonite[J]. Nonferrous Metals (Mineral Processing Section), 2016(2): 23-28. | |
68 | 李来顺. 硫化—胺法浮选菱锌矿的理论与工艺研究[D]. 长沙: 中南大学, 2013. |
LI Laishun. Study on theory and technology of flotation of smithsonite by sulfide-amine method[D].Changsha: Central South University, 2013. | |
69 | 吴丹丹. 铵盐对菱锌矿强化硫化浮选理论研究[D]. 昆明: 昆明理工大学, 2015. |
WU Dandan. Theoretical study on enhanced sulfide flotation of smithsonite by ammonium salt[D].Kunming: Kunming University of Science and Technology, 2015. | |
70 | WU Dandan, MA Wenhui, WEN Shuming, et al. Contribution of ammonium ions to sulfidation-flotation of smithsonite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 20-26. |
71 | FENG Qicheng, WEN Shuming, BAI Xu, et al. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation[J]. Minerals Engineering, 2019, 137: 1-9. |
72 | BAI Shaojun, YU Pan, DING Zhan, et al. Ammonium chloride catalyze sulfidation mechanism of smithsonite surface: Visual MINTEQ models, ToF-SIMS and DFT studies[J]. Minerals Engineering, 2020, 146: 106115. |
73 | ZHANG Song, WEN Shuming, JIANG Yaxiong, et al. Determination of Pb sulfide formation on smithsonite surface in NH3-Pb-S aqueous solution system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649: 129445. |
74 | ZHAO Wenjuan, WANG Meili, YANG Bin, et al. Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper-ammonium species[J]. Minerals Engineering, 2022, 187: 107796. |
75 | WU Dandan, MA Wenhui, WEN Shuming, et al. Enhancing the sulfidation of smithsonite by superficial dissolution with a novel complexing agent[J]. Minerals Engineering, 2017, 114: 1-7. |
76 | HE Kunzhong, ZHOU Hepeng, ZHANG Yongbing, et al. Enhancing flotation of smithsonite by using 1,3,5-triazinane-2,4,6-trithione as sulfidation[J]. Physicochemical Problems of Mineral Processing, 2021, 57(5): 1-14. |
77 | 陈瑶. 三聚硫氰酸强化氧化铅锌矿硫化浮选的机制研究[D]. 西安: 西安建筑科技大学, 2021. |
CHEN Yao. Study on mechanism of strengthening sulfide flotation of lead-zinc oxide by cyanuric acid[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. |
[1] | 赵伟, 江雨寒, 李振, 李毅红, 周安宁, 王宏. 煤岩显微组分电浮选分离与制氢过程中氢/氧气泡的影响机制[J]. 化工进展, 2024, 43(5): 2428-2435. |
[2] | 杨雅斌, 张迎霜, 杜海玲, 黄伟, 王晖. 环境对改性塑料表面亲/疏水转变的作用机制[J]. 化工进展, 2022, 41(4): 2140-2149. |
[3] | 胡楠, 陈林, 李会珍, 张思瑶, 张志军. 强化泡沫排液下浮选富集和回收工程纳米颗粒[J]. 化工进展, 2022, 41(1): 485-492. |
[4] | 杨洁, 徐龙华, 王周杰, 唐珍, 巫侯琴. 锂辉石浮选尾矿制备建筑装饰陶瓷材料及其性能[J]. 化工进展, 2020, 39(9): 3777-3785. |
[5] | 刘明宝, 郭万中, 印万忠. 油酸钠与胲铵类药剂协同浮选金红石的机理[J]. 化工进展, 2020, 39(8): 3362-3370. |
[6] | 黄斌, 王晨, 傅程, 付思强, 黄立凯, 张伟森. 三元复合驱采出水处理研究进展[J]. 化工进展, 2020, 39(10): 4238-4247. |
[7] | 徐艳艳,刘伟,舒婷,李娜,吴兆亮. 泡沫浮选耦合膜过滤回收有机废水中纳米TiO2光催化剂的工艺[J]. 化工进展, 2019, 38(10): 4773-4779. |
[8] | 苏超, 申培伦, 李佳磊, 蔡锦鹏, 刘思言, 曹阳, 刘殿文. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(04): 1921-1929. |
[9] | 张乾伟,石倩倩,吴建新,李佩悦,常志达. 氧化铁浸染型石英中性正浮选制备低铁石英砂[J]. 化工进展, 2019, 38(03): 1218-1225. |
[10] | 宋凯伟, 李佳磊, 蔡锦鹏, 刘思言, 曹阳, 苏超, 刘殿文. 典型氧化铜铅锌矿物浮选的表面硫化研究进展[J]. 化工进展, 2018, 37(09): 3618-3628. |
[11] | 王毅, 李平, 罗曼, 蔡旺锋. 磁加载絮凝法处理重金属废水技术的研究进展[J]. 化工进展, 2016, 35(S1): 281-284. |
[12] | 邱仙辉, 于洋, 张春菊. 鞣酸体系下黄铜矿与黄铁矿浮选动力学分析[J]. 化工进展, 2016, 35(07): 2258-2262. |
[13] | 成怀刚, 张晓曦, 程芳琴. 面向氯化钾浮选分离过程的超声强化[J]. 化工进展, 2016, 35(05): 1321-1325. |
[14] | 唐清1,2,钟宏1,2,王帅1,2,彭静1,2. 羟肟酸类化合物的合成与应用研究进展[J]. 化工进展, 2014, 33(03): 703-709. |
[15] | 王勇泉,刘广义,任 恒,狄 宁. 有机单(双)硫代磷(膦)酸类化合物的研究进展[J]. 化工进展, 2013, 32(02): 433-440. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |