化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3347-3358.DOI: 10.16085/j.issn.1000-6613.2023-0859
• 资源与环境化工 • 上一篇
谢国平1(), 谭雪松2, 刘鹏1, 苗长林2, 许光文1, 庄新姝2()
收稿日期:
2023-05-25
修回日期:
2023-09-15
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
庄新姝
作者简介:
谢国平(1997—),男,硕士研究生,研究方向为有机溶剂预处理。E-mail:2559884479@qq.com。
基金资助:
XIE Guoping1(), TAN Xuesong2, LIU Peng1, MIAO Changlin2, XU Guangwen1, ZHUANG Xinshu2()
Received:
2023-05-25
Revised:
2023-09-15
Online:
2024-06-15
Published:
2024-07-02
Contact:
ZHUANG Xinshu
摘要:
木质纤维素类生物质是地球上最丰富的可再生资源,但纤维素、半纤维素、木质素三组分之间复杂的键合结构限制了其有效的转化利用。有机溶剂预处理是消除这种顽抗性的有效方法,其能有效拆解三组分、提高纤维素酶水解性能,并回收高纯木质素组分。随着对溶剂绿色和可持续性的要求,预处理有机溶剂正逐渐向生物基衍生溶剂方向发展,近期已有多种新型的生物基衍生溶剂预处理的报道。本文系统综述了基于Hansen溶度参数理论和CHEM21绿色溶剂指南的有机溶剂预处理体系设计,分别归类为均相体系、两相体系和多元相转化体系,归纳了生物基衍生预处理有机溶剂应用的研究进展,在此基础上探论了生物基衍生溶剂预处理面临的挑战和应用前景,以期为木质纤维素类生物质的有机溶剂预处理体系的设计和选择提供参考。
中图分类号:
谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358.
XIE Guoping, TAN Xuesong, LIU Peng, MIAO Changlin, XU Guangwen, ZHUANG Xinshu. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358.
溶剂 | Hansen溶解度参数 | 相对能差(RED) | ||
---|---|---|---|---|
色散分量 | 极性分量 | 氢键分量 | ||
乙醇 | 15.8 | 8.8 | 19.4 | 1.37 |
甲苯 | 18.0 | 1.4 | 2.0 | 1.53 |
四氢呋喃 | 16.8 | 5.7 | 8.0 | 1.06 |
戊内酯 | 15.5 | 4.7 | 6.6 | 1.38 |
昔兰尼 | 18.8 | 10.5 | 7.0 | 0.89 |
二甲基异山梨醇 | 17.6 | 7.1 | 7.5 | 1.06 |
乙二醇 | 17.0 | 11.0 | 26.0 | 1.00 |
二甲基四氢呋喃 | 16.9 | 5.0 | 4.3 | 1.34 |
甲基异丙基酮 | 15.1 | 6.1 | 4.1 | 1.48 |
苯氧乙醇 | 17.0 | 6.1 | 12.3 | 0.93 |
丁醇 | 16.0 | 5.7 | 15.8 | 1.06 |
戊醇 | 15.1 | 5.7 | 15.9 | 1.16 |
表1 生物基衍生溶剂预处理的溶解度参数和与木质素的相对能差
溶剂 | Hansen溶解度参数 | 相对能差(RED) | ||
---|---|---|---|---|
色散分量 | 极性分量 | 氢键分量 | ||
乙醇 | 15.8 | 8.8 | 19.4 | 1.37 |
甲苯 | 18.0 | 1.4 | 2.0 | 1.53 |
四氢呋喃 | 16.8 | 5.7 | 8.0 | 1.06 |
戊内酯 | 15.5 | 4.7 | 6.6 | 1.38 |
昔兰尼 | 18.8 | 10.5 | 7.0 | 0.89 |
二甲基异山梨醇 | 17.6 | 7.1 | 7.5 | 1.06 |
乙二醇 | 17.0 | 11.0 | 26.0 | 1.00 |
二甲基四氢呋喃 | 16.9 | 5.0 | 4.3 | 1.34 |
甲基异丙基酮 | 15.1 | 6.1 | 4.1 | 1.48 |
苯氧乙醇 | 17.0 | 6.1 | 12.3 | 0.93 |
丁醇 | 16.0 | 5.7 | 15.8 | 1.06 |
戊醇 | 15.1 | 5.7 | 15.9 | 1.16 |
溶剂 | 沸点/℃ | 闪点/℃ | 绿色溶剂等级 | |||
---|---|---|---|---|---|---|
安全 | 健康 | 环境 | CHEM21 | |||
乙醇 | 78.3 | 14 | 4 | 3 | 3 | 推荐 |
甲苯 | 110.6 | 4 | 5 | 6 | 3 | 有问题 |
四氢呋喃 | 66 | -14 | 6 | 7 | 5 | 有问题 |
戊内酯 | 205 | 81 | 1 | 5 | 7 | 有问题 |
昔兰尼 | 226 | 108 | 1 | 2 | 7 | 有问题 |
二甲基异山梨醇 | 93~95 | 120 | 1 | 2 | 3 | 推荐 |
乙二醇 | 198 | 111 | 1 | 2 | 5 | 推荐 |
二甲基四氢呋喃 | 80 | -11 | 6 | 5 | 3 | 有问题 |
甲基异丙基酮 | 94 | -7.9 | 5 | 3 | 3 | 推荐 |
苯氧乙醇 | 245 | 105 | 1 | 4 | 3 | 推荐 |
丁醇 | 118 | 35 | 3 | 4 | 3 | 推荐 |
戊醇 | 137 | 49 | 3 | 7 | 4 | 有问题 |
表2 生物基衍生溶剂的物理性质和绿色特征参数
溶剂 | 沸点/℃ | 闪点/℃ | 绿色溶剂等级 | |||
---|---|---|---|---|---|---|
安全 | 健康 | 环境 | CHEM21 | |||
乙醇 | 78.3 | 14 | 4 | 3 | 3 | 推荐 |
甲苯 | 110.6 | 4 | 5 | 6 | 3 | 有问题 |
四氢呋喃 | 66 | -14 | 6 | 7 | 5 | 有问题 |
戊内酯 | 205 | 81 | 1 | 5 | 7 | 有问题 |
昔兰尼 | 226 | 108 | 1 | 2 | 7 | 有问题 |
二甲基异山梨醇 | 93~95 | 120 | 1 | 2 | 3 | 推荐 |
乙二醇 | 198 | 111 | 1 | 2 | 5 | 推荐 |
二甲基四氢呋喃 | 80 | -11 | 6 | 5 | 3 | 有问题 |
甲基异丙基酮 | 94 | -7.9 | 5 | 3 | 3 | 推荐 |
苯氧乙醇 | 245 | 105 | 1 | 4 | 3 | 推荐 |
丁醇 | 118 | 35 | 3 | 4 | 3 | 推荐 |
戊醇 | 137 | 49 | 3 | 7 | 4 | 有问题 |
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素保留率/% | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
玉米芯 | 220℃,30min | 68.2 | 83.4 | 97.5 | [ | |||
高粱秸秆 | 200℃,60min | 87.4 | 97.1 | 91.4 | 92.8 | [ | ||
GVL/H2O | 银叶草 | 170℃,120min | 82.2 | 87.7 | 75.9 | 96.5 | [ | |
GVL/H2O | 桉树 | 120℃,60min | 77.1 | 96.1 | 81.6 | 89.1 | [ | |
GVL/H2O | 桉树 | HCl | 100℃,60min | 93.2 | 80 | 68 | 65 | [ |
GVL/H2O | 桉树 | 120℃,30min | 83.5 | 97.2 | 86.2 | 75.4 | [ | |
GVL/H2O | 桉树 | 167℃,10min | 86 | 91 | [ | |||
Cyrene/H2O | 杨木 | 120℃,60min | 72.5 | [ | ||||
Cyrene/TsOH | 竹 | TsOH | 120℃,60min | 79.1 | 90.6 | [ | ||
DMI/H2O | 桉树 | 120℃,60min | 80 | 98 | 91.6 | 82.1 | [ | |
EG/H2O | 甘蔗渣 | HCl | 120℃,60min | 71.4 | 83.5 | 61.2 | 80.4 | [ |
EG | 甘蔗渣 | HCl | 120℃,60min | 96.9 | 78.8 | 48.5 | 85.6 | [ |
EG/H2O | 玉米秸秆 | 120℃,60min | 84.7 | 81.3 | 80.3 | 70.6 | [ | |
EG/H2O | EPB | 80℃,45min | 90.4 | 81.5 | 75.1 | [ | ||
EG/H2O | 甘蔗渣 | 170℃,60min | 93 | 74.3 | 71.2 | [ | ||
EG/H2O | 甘蔗渣 | 120℃,60min | 96.9 | 84.6 | 47.5 | 82.1 | [ | |
EG/H2O | 杨木 | 120℃,10min | 42.7 | 56.9 | 94.5 | [ |
表3 均相体系预处理木质纤维素类生物质
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素保留率/% | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
玉米芯 | 220℃,30min | 68.2 | 83.4 | 97.5 | [ | |||
高粱秸秆 | 200℃,60min | 87.4 | 97.1 | 91.4 | 92.8 | [ | ||
GVL/H2O | 银叶草 | 170℃,120min | 82.2 | 87.7 | 75.9 | 96.5 | [ | |
GVL/H2O | 桉树 | 120℃,60min | 77.1 | 96.1 | 81.6 | 89.1 | [ | |
GVL/H2O | 桉树 | HCl | 100℃,60min | 93.2 | 80 | 68 | 65 | [ |
GVL/H2O | 桉树 | 120℃,30min | 83.5 | 97.2 | 86.2 | 75.4 | [ | |
GVL/H2O | 桉树 | 167℃,10min | 86 | 91 | [ | |||
Cyrene/H2O | 杨木 | 120℃,60min | 72.5 | [ | ||||
Cyrene/TsOH | 竹 | TsOH | 120℃,60min | 79.1 | 90.6 | [ | ||
DMI/H2O | 桉树 | 120℃,60min | 80 | 98 | 91.6 | 82.1 | [ | |
EG/H2O | 甘蔗渣 | HCl | 120℃,60min | 71.4 | 83.5 | 61.2 | 80.4 | [ |
EG | 甘蔗渣 | HCl | 120℃,60min | 96.9 | 78.8 | 48.5 | 85.6 | [ |
EG/H2O | 玉米秸秆 | 120℃,60min | 84.7 | 81.3 | 80.3 | 70.6 | [ | |
EG/H2O | EPB | 80℃,45min | 90.4 | 81.5 | 75.1 | [ | ||
EG/H2O | 甘蔗渣 | 170℃,60min | 93 | 74.3 | 71.2 | [ | ||
EG/H2O | 甘蔗渣 | 120℃,60min | 96.9 | 84.6 | 47.5 | 82.1 | [ | |
EG/H2O | 杨木 | 120℃,10min | 42.7 | 56.9 | 94.5 | [ |
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素 保留率/% | 半纤维素 去除率/% | 木质素 去除率/% | 纤维素 酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2-MeTHF/H2O | 桦木 | 180℃,60min | — | — | — | 77.09 | [ | |
2-MeTHF/H2O | 小麦秸秆 | TsOH | 140℃,180min | 95.69 | — | 77.49 | — | [ |
2-MeTHF/H2O | 玉米秸秆 | 170℃,60min | — | — | — | 78.9 | [ | |
MIBK/H2O | 桉树 | 180℃,60min | — | 100 | 65.82 | 97.54 | [ | |
EPH/H2O | 稻草 | 120℃,180min | — | 75.83 | 72.69 | 88.06 | [ | |
EPH/H2O | 稻草 | 140℃,90min | 73.74 | 100 | 88.43 | — | [ | |
EPH/H2O | 稻草 | 120℃,30min | 79.76 | 45.9 | 82.2 | 71.26 | [ | |
Butanol/H2O | 甜菜浆 | 180℃,200min | — | 100 | 80 | 96 | [ | |
Pentanol/H2O | 金合欢木 | 170℃,30min | — | — | 70.27 | 92.14 | [ | |
Pentanol/H2O | 白杨 | 160℃,60min | 91.1 | 91 | 85 | 96 | [ |
表4 双相生物质衍生溶剂木质纤维素类预处理
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素 保留率/% | 半纤维素 去除率/% | 木质素 去除率/% | 纤维素 酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2-MeTHF/H2O | 桦木 | 180℃,60min | — | — | — | 77.09 | [ | |
2-MeTHF/H2O | 小麦秸秆 | TsOH | 140℃,180min | 95.69 | — | 77.49 | — | [ |
2-MeTHF/H2O | 玉米秸秆 | 170℃,60min | — | — | — | 78.9 | [ | |
MIBK/H2O | 桉树 | 180℃,60min | — | 100 | 65.82 | 97.54 | [ | |
EPH/H2O | 稻草 | 120℃,180min | — | 75.83 | 72.69 | 88.06 | [ | |
EPH/H2O | 稻草 | 140℃,90min | 73.74 | 100 | 88.43 | — | [ | |
EPH/H2O | 稻草 | 120℃,30min | 79.76 | 45.9 | 82.2 | 71.26 | [ | |
Butanol/H2O | 甜菜浆 | 180℃,200min | — | 100 | 80 | 96 | [ | |
Pentanol/H2O | 金合欢木 | 170℃,30min | — | — | 70.27 | 92.14 | [ | |
Pentanol/H2O | 白杨 | 160℃,60min | 91.1 | 91 | 85 | 96 | [ |
1 | ENVELOPE Tansu Galimova Person, Manish RAM, BREYER Christian. Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050[J]. Energy Reports, 2022, 8: 14124-14143. |
2 | ICAZA Daniel, David BORGE-DIEZ, GALINDO Santiago Pulla. Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050[J]. Renewable Energy, 2021, 170: 1324-1341. |
3 | GALIMOVA Tansu, Manish RAM, BREYER Christian. Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050[J]. Energy Reports, 2022, 8: 14124-14143. |
4 | BRUGGER Heike, EICHHAMMER Wolfgang, MIKOVA Nadezhda, et al. Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?[J]. Energy Policy, 2021, 152: 112216. |
5 | MUJTABA Aqib, JENA Pabitra Kumar, BEKUN Festus Victor, et al. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112300. |
6 | BERDYSHEVA Sofia, IKONNIKOVA Svetlana. The energy transition and shifts in fossil fuel use: The study of international energy trade and energy security dynamics[J]. Energies, 2021, 14(17): 5396. |
7 | WEI KIT CHIN Danny, Steven LIM, PANG Yean Ling, et al. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(4): 808-829. |
8 | YOUSUF Abu, PIROZZI Domenico, SANNINO Filomena. Fundamentals of lignocellulosic biomass[M]. London: Elsevier, 2020. |
9 | YOUSUF Abu. Biodiesel from lignocellulosic biomass—Prospects and challenges[J]. Waste Management, 2012, 32(11): 2061-2067. |
10 | ZENG Yining, HIMMEL Michael E, DING Shiyou. Visualizing chemical functionality in plant cell walls[J]. Biotechnology for Biofuels, 2017, 10(1): 1-16. |
11 | LORENCI WOICIECHOWSKI Adenise, DALMAS NETO Carlos José, PORTO DE SOUZA VANDENBERGHE Luciana, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance: Conventional processing and recent advances[J]. Bioresource Technology, 2020, 304: 122848. |
12 | YIN Xiaoyan, WEI Linshan, PAN Xueyuan, et al. The pretreatment of lignocelluloses with green solvent as biorefinery preprocess: A minor review[J]. Frontiers in Plant Science, 2021, 12: 670061. |
13 | ZHANG Ke, PEI Zhijian, WANG Donghai. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review[J]. Bioresource Technology, 2016, 199: 21-33. |
14 | WEI KIT CHIN Danny, Steven LIM, PANG Yean Ling, et al. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(4): 808-829. |
15 | ROY Ranen, RAHMAN Md Sajjadur, RAYNIE Douglas E. Recent advances of greener pretreatment technologies of lignocellulose[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100035. |
16 | PUTRO Jindrayani Nyoo, SOETAREDJO Felycia Edi, LIN Shi-Yow, et al. Pretreatment and conversion of lignocellulose biomass into valuable chemicals[J]. RSC Advances, 2016, 6(52): 46834-46852. |
17 | ZHAO Xuebing, CHENG Keke, LIU Dehua. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Applied Microbiology and Biotechnology, 2009, 82(5): 815-827. |
18 | HILDEBRAND Joel H. A critique of the theory of solubility of non-electrolytes[J]. Chemical Reviews, 1949, 44(1): 37-45. |
19 | ZHANG Zhanying, HARRISON Mark D, RACKEMANN Darryn W, et al. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification[J]. Green Chemistry, 2016, 18(2): 360-381. |
20 | JOELH Hildenrand, ROBERT Scott. Regular solutions[M]. Englewood Cliffs: Prentice Hall, 1962. |
21 | HANSEN Charles M. Hansen solubility parameters: a user’s handbook[M]. 2nd ed. Boca Raton, Fla.: Taylor & Francis, 2007. |
22 | BARTON Allan F M. CRC handbook of solubility parameters and other cohesion parameters[M]. 2nd ed. New York:Routledge, 1991. |
23 | BARTON Allan F M. Solubility parameters[J]. Chemical Reviews, 1975, 75(6): 731-753. |
24 | HANSEN Charles M. The universality of the solubility parameter[J]. Product R&D, 1969, 8(1): 2-11. |
25 | TAN Xuesong, ZHANG Quan, WANG Wen, et al. Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation[J]. Fuel, 2019, 249: 334-340. |
26 | CLARKE Coby J, TU Wei-Chien, LEVERS Oliver, et al. Green and sustainable solvents in chemical processes[J]. Chemical Reviews, 2018, 118(2): 747-800. |
27 | ANASTAS Paul T, WARNER John C. Green chemistry: Theory and practice [J]. Abstracts of Papers of the American Chemical Society, 1998, 244(48): 19758-19771. |
28 | PRAT Denis, WELLS Andy, HAYLER John, et al. CHEM21 selection guide of classical- and less classical-solvents[J]. Green Chemistry, 2016, 18(1): 288-296. |
29 | MENG Xianzhi, WANG Yunxuan, CONTE Austin J, et al. Applications of biomass-derived solvents in biomass pretreatment–Strategies, challenges, and prospects[J]. Bioresource Technology, 2023, 368: 128280. |
30 | VIOREL Nita, LORENZO Benini, CONSTANTIN Ciupagea, et al. Bioeconomy and sustainability: A potential contribution to the bioeconomy observatory[J]. Biotechnological Engineering, 2013. |
31 | QIU Huanguang, HUANG Jikun, YANG Jun, et al. Bioethanol development in China and the potential impacts on its agricultural economy[J]. Applied Energy, 2010, 87(1): 76-83. |
32 | HESSEL Volker, TRAN Nam Nghiep, ASRAMI Mahdieh Razi, et al. Sustainability of green solvents—Review and perspective[J]. Green Chemistry, 2022, 24: 410-437. |
33 | DUTTA Saikat, DE Sudipta, SAHA Basudeb, et al. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catalysis Science & Technology, 2012, 2(10): 2025. |
34 | WANG Yunyan, LI Mi, WYMAN Charles E, et al. Fast fractionation of technical lignins by organic cosolvents[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6064-6072. |
35 | MENG Xianzhi, PARIKH Aakash, SEEMALA Bhogeswararao, et al. Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8711-8718. |
36 | LI Jianmei, ZHANG Wenyu, XU Shuguang, et al. The roles of H2O/tetrahydrofuran system in lignocellulose valorization[J]. Frontiers in Chemistry, 2020, 8: 70. |
37 | YAO Fengpei, SHEN Fei, WAN Xue, et al. High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110107. |
38 | ZHAO Zhimin, MENG Xianzhi, SCHEIDEMANTLE Brent, et al. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion[J]. Bioresource Technology, 2022, 347: 126367. |
39 | JIN Longming, YU Xue, PENG Chang, et al. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification[J]. Bioresource Technology, 2018, 270: 537-544. |
40 | HORVÁTH István T. Solvents from nature[J]. Green Chemistry, 2008, 10(10): 1024. |
41 | YAO Junwei, XIE Xiaobao, SHI Qingshan. Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system[J]. Renewable Energy, 2021, 177: 853-858. |
42 | SUN Shaoni, CHEN Xue, TAO Yinghua, et al. Pretreatment of Eucalyptus urophylla in γ-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis[J]. Industrial Crops and Products, 2019, 132: 21-28. |
43 | ZHANG Jian, SHEN Wei, COLLINGS Cynthia, et al. Visualizing plant cell wall changes proves the superiority of hydrochloric acid over sulfuric acid catalyzed γ-valerolactone pretreatment[J]. Chemical Engineering Journal, 2021, 412: 128660. |
44 | LI Yijing, LI Hanyin, SUN Shaoni, et al. Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production[J]. Renewable Energy, 2019, 134: 228-234. |
45 | TREVORAH Raymond, HARDING Georgia, OTHMAN Maazuza Z. Rapid fractionation of various lignocellulosic biomass using gamma-valerolactone[J]. Bioresource Technology Reports, 2020, 11: 100497. |
46 | KONG Dickson, DOLZHENKO Anton V. Cyrene: A bio-based sustainable solvent for organic synthesis[J]. Sustainable Chemistry and Pharmacy, 2022, 25: 100591. |
47 | STINI Naya A, GKIZIS Petros L, KOKOTOS Christoforos G. Cyrene: A bio-based novel and sustainable solvent for organic synthesis[J]. Green Chemistry, 2022, 24(17): 6435-6449. |
48 | MENG Xianzhi, PU Yunqiao, LI Mi, et al. A biomass pretreatment using cellulose-derived solvent Cyrene[J]. Green Chemistry, 2020, 22(9): 2862-2872. |
49 | MOHAN Mood, SALE Kenneth L, KALB Roland S, et al. Multiscale molecular simulation strategies for understanding the delignification mechanism of biomass in Cyrene[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(33): 11016-11029. |
50 | WILSON Kirsty L, KENNEDY Alan R, MURRAY Jane, et al. Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation[J]. Beilstein Journal of Organic Chemistry, 2016, 12: 2005-2011. |
51 | ZHANG Jinfeng, WHITE Gabrielle B, RYAN Michaela D, et al. Dihydrolevoglucosenone (Cyrene) As a green alternative to N,N-dimethylformamide (DMF) in MOF synthesis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7186-7192. |
52 | TUNDO Pietro, Fabio ARICÒ, GAUTHIER Guillaume, et al. Green synthesis of dimethyl isosorbide[J]. ChemSusChem, 2010, 3(5): 566-570. |
53 | YANG Shuang, YANG Xianpeng, MENG Xianzhi, et al. Efficient pretreatment using dimethyl isosorbide as a biobased solvent for potential complete biomass valorization[J]. Green Chemistry, 2022, 24(10): 4082-4094. |
54 | YU Haitao, XUE Zhimin, WANG Yang, et al. Enabling efficient dissolution and fractionation of lignin by renewable and adjustable dimethyl isosorbide-based solvent systems[J]. Separation and Purification Technology, 2023, 306: 122688. |
55 | YU Osbert, YOO Chang Geun, KIM Chang Soo, et al. Understanding the effects of ethylene glycol-assisted biomass fractionation parameters on lignin characteristics using a full factorial design and computational modeling[J]. ACS Omega, 2019, 4(14): 16103-16110. |
56 | SHI Tingting, LIN Jianghai, LI Jiasheng, et al. Pre-treatment of sugarcane bagasse with aqueous ammonia-glycerol mixtures to enhance enzymatic saccharification and recovery of ammonia[J]. Bioresource Technology, 2019, 289: 121628. |
57 | LING Rongxin, WEI Weiqi, JIN Yongcan. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol-water to improve the cellulose enzymatic conversion[J]. Bioresource Technology, 2022, 361: 127723. |
58 | Yanting LYU, CHEN Zhengyu, WANG Huan, et al. Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80[J]. Renewable Energy, 2022, 194: 495-503. |
59 | XUE Fengyang, LI Wenzhi, AN Shengxin, et al. Ethylene glycol based acid pretreatment of corn stover for cellulose enzymatic hydrolysis[J]. RSC Advances, 2021, 11(23): 14140-14147. |
60 | CHIN Danny Wei Kit, Steven LIM, PANG Yean Ling, et al. Effects of organic solvents on the organosolv pretreatment of degraded empty fruit bunch for fractionation and lignin removal[J]. Sustainability, 2021, 13(12): 6757. |
61 | LIU Yiting, LI Wen, LI Kai, et al. Tailored production of lignin-containing cellulose nanofibrils from sugarcane bagasse pretreated by acid-catalyzed alcohol solutions[J]. Carbohydrate Polymers, 2022, 291: 119602. |
62 | WEI Weiqi, CHEN Zhengyu, WANG Huan, et al. Co-production of fermentable glucose, xylose equivalents, and HBS-lignin from sugarcane bagasse through a FeCl3-catalyzed EG/H2O pretreatment[J]. Industrial Crops and Products, 2021, 165: 113440. |
63 | ZHANG Yongjian, FENG Junfeng, XIAO Zhanping, et al. Highly efficient and selectivefractionation strategy for lignocellulosic biomass with recyclable dioxane/ethylene glycol binary solvent[J]. Industrial Crops and Products, 2020, 144: 112038. |
64 | ALORKU Kingdom, SHEN Chen, LI Yuhang, et al. Biomass-derived 2-methyltetrahydrofuran platform: A focus on precious and non-precious metal-based catalysts for the biorefinery[J]. Green Chemistry, 2022, 24(11): 4201-4236. |
65 | XUE Bailiang, YANG Yang, ZHU Mingqiang, et al. Lewis acid-catalyzed biphasic 2-methyltetrahydrofuran/H2O pretreatment of lignocelluloses to enhance cellulose enzymatic hydrolysis and lignin valorization[J]. Bioresource Technology, 2018, 270: 55-61. |
66 | ZHAN Qiwen, LIN Qixuan, WU Yue, et al. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization[J]. Bioresource Technology, 2023, 376: 128887. |
67 | WANG Xiaohui, LI Huiling, LIN Qixuan, et al. Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts[J]. Bioresource Technology, 2019, 290: 121764. |
68 | SUN Shaolong, CAO Xuefei, LI Huiling, et al. Simultaneous and efficient production of furfural and subsequent glucose in MTHF/H2O biphasic system via parameter regulation[J]. Polymers, 2020, 12(3): 557. |
69 | ZHANG Qilin, GUO Zongwei, ZENG Xianhai, et al. A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations[J]. Renewable Energy, 2021, 179: 351-358. |
70 | PELETEIRO Susana, RASPOLLI GALLETTI Anna Maria, ANTONETTI Claudia, et al. Manufacture of furfural from xylan-containing biomass by acidic processing of hemicellulose-derived saccharides in biphasic media using microwave heating[J]. Journal of Wood Chemistry and Technology, 2018, 38(3): 198-213. |
71 | SWEYGERS Nick, HARRER Johannes, DEWIL Raf, et al. A microwave-assisted process for the in situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system[J]. Journal of Cleaner Production, 2018, 187: 1014-1024. |
72 | SWEYGERS Nick, DEPUYDT Delphine E C, VAN VUURE Aart Willem, et al. Simultaneous production of 5-hydroxymethylfurfural and furfural from bamboo (Phyllostachys nigra “Boryana”) in a biphasic reaction system[J]. Chemical Engineering Journal, 2020, 386: 123957. |
73 | ZHANG Quan, TAN Xuesong, WANG Wen, et al. Screening solvents based on Hansen solubility parameter theory to depolymerize lignocellulosic biomass efficiently under low temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8678-8686. |
74 | RAPHAEL Anthony P, GARRASTAZU Gabriela, SONVICO Fabio, et al. Formulation design for topical drug and nanoparticle treatment of skin disease[J]. Therapeutic Delivery, 2015, 6(2): 197-216. |
75 | ZHENG Yayue, YU Yuxin, LIN Wenqian, et al. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment[J]. Bioresource Technology, 2021, 325: 124691. |
76 | ZHANG Quan, DAI Chenxing, TAN Xuesong, et al. Biphasic fractionation of lignocellulosic biomass based on the combined action of pretreatment severity and solvent effects on delignification[J]. Bioresource Technology, 2023, 369: 128477. |
77 | ZHANG Quan, TAN Xuesong, WANG Wen, et al. A novel recyclable alkaline biphasic 2-phenoxyethanol/water system for rice straw biorefinery under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(20): 7649-7655. |
78 | ZHANG Quan, DAI Chenxing, ZHANG Jun, et al. Fractionation of lignin from rice straw using an acidified biphasic solvent system[J]. International Journal of Biological Macromolecules, 2023, 230: 123249. |
79 | VALLES A, CAPILLA M, ÁLVAREZ-HORNOS F J, et al. Optimization of alkali pretreatment to enhance rice straw conversion to butanol[J]. Biomass and Bioenergy, 2021, 150: 106131. |
80 | KAWAMATA Yuki, YOSHIKAWA Takuya, KOYAMA Yoshihito, et al. Uniqueness of biphasic organosolv treatment of soft- and hardwood using water/1-butanol co-solvent[J]. Industrial Crops and Products, 2021, 159: 113078. |
81 | SCHMETZ Quentin, TERAMURA Hiroshi, MORITA Kenta, et al. Versatility of a dilute acid/butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, monosaccharides and cellulose in distinct phases[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11069-11079. |
82 | YAN Lishi, MA Ruoshui, WEI Huaixin, et al. Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system[J]. Bioresource Technology, 2019, 279: 84-91. |
83 | BRIENZA Filippo, VAN AELST Korneel, DEVRED François, et al. Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass[J]. Chemical Engineering Journal, 2022, 450: 138179. |
84 | ISLAM Md Khairul, REHMAN Shazia, GUAN Jianyu, et al. Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin[J]. Applied Energy, 2021, 303: 117653. |
85 | MADADI Meysam, SONG Guojie, KARIMI Keikhosro, et al. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability[J]. Bioresource Technology, 2022, 359: 127503. |
86 | MADADI Meysam, SHAH Syed Waqas ALI, SUN Chihe, et al. Efficient co-production of xylooligosaccharides and glucose from lignocelluloses by acid/pentanol pretreatment: Synergetic role of lignin removal and inhibitors[J]. Bioresource Technology, 2022, 365: 128171. |
87 | BOZELL Joseph J, BLACK Stuart K, MYERS Michele, et al. Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals[J]. Biomass and Bioenergy, 2011, 35(10): 4197-4208. |
88 | BLACK Stuart K, HAMES Bonnie R, MYERS Michele D. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars: US5730837A [P]. 2023-08-24. |
89 | BRUDECKI Grzegorz, CYBULSKA Iwona, ROSENTRATER Kurt, et al. Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass[J]. Bioresource Technology, 2012, 107: 494-504. |
90 | CHEN Jiazhao, TAN Xuesong, MIAO Changlin, et al. A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system[J]. Bioresource Technology, 2021, 342: 125963. |
91 | LI Wuhuan, TAN Xuesong, MIAO Changlin, et al. Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production[J]. Green Chemistry, 2023, 25(3): 1169-1178. |
[1] | 杨林青,马丹蕾,孙付保,曾诚,唐艳军,孙海彦. 甘蔗渣的酸催化常压甘油有机溶剂预处理及其酶解[J]. 化工进展, 2019, 38(9): 4247-4254. |
[2] | 唐瑞琪, 熊亮, 程诚, 赵心清, 白凤武. 纤维素乙醇生产重组酿酒酵母菌株的构建与优化研究进展[J]. 化工进展, 2018, 37(08): 3119-3128. |
[3] | 仝玉军, 沈本贤, 刘纪昌, 黄恒文. 基于柱色谱分离的阿曼减压渣油结构表征与溶解度参数测定[J]. 化工进展, 2018, 37(07): 2547-2556. |
[4] | 余 强,庄新姝,袁振宏,亓 伟,王 琼,谭雪松,许敬亮,张 宇,徐慧娟,马隆龙. 木质纤维素类生物质制取燃料及化学品的研究进展[J]. 化工进展, 2012, 31(04): 784-791. |
[5] | 余 强1,2,庄新姝1,袁振宏1,亓 伟1,王 闻1,2,王 琼1,杨丽芳3,谭雪松1. 木质纤维素类生物质高温液态水预处理技术 [J]. 化工进展, 2010, 29(11): 2177-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |