1 |
WANG Q, HAN X H, SOMMERS A, et al. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks[J]. International Journal of Refrigeration, 2012, 35(1): 7-26.
|
2 |
WANG Qiuwang, CHEN Guidong, CHEN Qiuyang, et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(10): 836-853.
|
3 |
林文珠, 曹嘉豪, 方晓明, 等. 管壳式换热器强化传热研究进展[J]. 化工进展, 2018, 37(4): 1276-1286.
|
|
LIN Wenzhu, CAO Jiahao, FANG Xiaoming, et al. Research progress of heat transfer enhancement of shell-and-tube heat exchanger[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1276-1286.
|
4 |
CHEN Xiangjie, SU Yuehong, REAY D, et al. Recent research developments in polymer heat exchangers—A review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1367-1386.
|
5 |
AKINÇ H E, BECER M, BAKIR M, et al. Fouling monitoring in crude oil preheat trains[C]// MALAYERI M R. Heat Exchanger Fouling and Cleaning. Budapest, Hungary, 2013: 18-21.
|
6 |
殷小明, 陈艺, 宋友立, 等. 换热器内结垢特性研究进展[J]. 化工装备技术, 2021, 42(6): 1-6.
|
|
YIN Xiaoming, CHEN Yi, SONG Youli, et al. Research progress of fouling characteristics in heat exchangers[J]. Chemical Equipment Technology, 2021, 42(6): 1-6.
|
7 |
WANG Yuan, SHEN Chao, TANG Zhenbo, et al. Interaction between particulate fouling and precipitation fouling: Sticking probability and deposit bond strength[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118700.
|
8 |
杨晓军, 祝佳雄. 涡轮叶栅通道内颗粒物沉积过程的数值模拟[J]. 航空学报, 2017, 38(5): 120530.
|
|
YANG Xiaojun, ZHU Jiaxiong. Numerical simulation of particle deposition process inside turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120530.
|
9 |
李伟. 通风管道中细微粉尘的湍流沉积规律[J]. 中国粉体技术, 2014, 20(2): 56-60.
|
|
LI Wei. Turbulent deposition rule of fine dust in ventilation ducts[J]. China Powder Science and Technology, 2014, 20(2): 56-60.
|
10 |
HAN Yunlong, HU Yongmei, QIAN Fuping. Effects of air temperature and humidity on particle deposition[J]. Chemical Engineering Research and Design, 2011, 89(10): 2063-2069.
|
11 |
刘洪涛, 张力. 微细颗粒壁面沉积的数值研究[J]. 工程热物理学报, 2010, 31(3): 431-434.
|
|
LIU Hongtao, ZHANG Li. Numerical investigation of micro-particle deposition on wall[J]. Journal of Engineering Thermophysics, 2010, 31(3): 431-434.
|
12 |
张宁, 李楠, 杨启容, 等. 换热面上颗粒污垢生长特性的数值模拟研究[J]. 青岛大学学报(工程技术版), 2018, 33(1): 75-79.
|
|
ZHANG Ning, LI Nan, YANG Qirong, et al. Numerical simulation of particle fouling growth characteristics on heat transfer surface[J]. Journal of Qingdao University (Engineering & Technology Edition), 2018, 33(1): 75-79.
|
13 |
于晓燕. 管内微米氧化镁颗粒污垢特性的数值模拟[D]. 吉林: 东北电力大学, 2019.
|
|
YU Xiaoyan. Numerical simulation of micron magnesia oxide particles fouling characteristics in tube[D]. Jilin: Northeast Electric Power University, 2019.
|
14 |
TIAN Wei. A review of sensitivity analysis methods in building energy analysis[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 411-419.
|
15 |
ZHANG Yelin, ZHANG Xingxing, HUANG Pei, et al. Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization[J]. Applied Energy, 2020, 279: 115820.
|
16 |
SUN Yongjun. Sensitivity analysis of macro-parameters in the system design of net zero energy building[J]. Energy and Buildings, 2015, 86: 464-477.
|
17 |
DU Tingting, DU Wenjing, CHE Kai, et al. Parametric optimization of overlapped helical baffled heat exchangers by Taguchi method[J]. Applied Thermal Engineering, 2015, 85: 334-339.
|
18 |
FESANGHARY M, DAMANGIR E, SOLEIMANI I. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm[J]. Applied Thermal Engineering, 2009, 29(5/6): 1026-1031.
|
19 |
MOST T, WILL J. Meta-model of Optimal Prognosis—An automatic approach for variablereduction and optimal meta-model selection[C]// Proceedings of the Weimar Optimization and Stochastic Days, 2008: 1-22.
|
20 |
XIAO Juan, LIN Weixiang, WANG Simin, et al. Global sensitivity analysis and optimization for coal-water slurry preheaters based on metamodel of optimal prognosis[J]. Numerical Heat Transfer, Part A: Applications, 2022, 82(9): 507-528.
|
21 |
DUANGTHONGSUK W, WONGWISES S. Comparison of the heat transfer performance and friction characteristics between fixed and rotating turbine-type swirl generators fitted in a small circular tube[J]. Experimental Thermal and Fluid Science, 2013, 50: 222-228.
|
22 |
LI Xiangdong, YAN Yihuan, SHANG Yidan, et al. An Eulerian-Eulerian model for particulate matter transport in indoor spaces[J]. Building and Environment, 2015, 86: 191-202.
|
23 |
ORSZAG S A, YAKHOT V, FLANNERY W S, et al. Renormalization group modeling and turbulence simulations[J]. Near-Wall Turbulent Flows, 1993: 1-21.
|
24 |
张震, 关昌峰, 何长江, 等. 螺旋叶片转子强化管抗污垢性能的数值模拟[J]. 化工进展, 2013, 32(11): 2562-2568.
|
|
ZHANG Zhen, GUAN Changfeng, HE Changjiang, et al. Numerical studies on anti-dirt performance of the enhanced tube with helical blade rotors[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2562-2568.
|
25 |
ZHANG Xiaomeng, PIRKER S, SAEEDIPOUR M. Numerical investigation of particle motion at the steel-slag interface in continuous casting using VOF method and dynamic overset grids[J]. Experimental and Computational Multiphase Flow, 2023, 5(2): 178-191.
|
26 |
XU Zhiming, YU Xiaoyan, HAN Zhimin, et al. Simulation of particle fouling characteristics with improved modeling on two different tubes[J]. Powder Technology, 2021, 382: 398-405.
|
27 |
FU Lei, LIU Pengfei, LI Guojun. Numerical investigation on ash fouling characteristics of flue gas heat exchanger[J]. Applied Thermal Engineering, 2017, 123: 891-900.
|
28 |
谢广烁, 张斯亮, 王家瑞, 等. 自转式内置转子颗粒污垢抑制特性研究[J]. 化工学报, 2022, 73(12): 5384-5393.
|
|
XIE Guangshuo, ZHANG Siliang, WANG Jiarui, et al. Study on anti-fouling characteristics of particulate fouling using built-in self-rotating rotors[J]. CIESC Journal, 2022, 73(12): 5384-5393.
|
29 |
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
|
|
YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
|
30 |
SOBOL′ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
|
31 |
HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliability Engineering & System Safety, 1996, 52(1): 1-17.
|
32 |
ZHANG Shaojie, LU Lin, DONG Chuanshuai, et al. Performance evaluation of a double-pipe heat exchanger fitted with self-rotating twisted tapes[J]. Applied Thermal Engineering, 2019, 158: 113770.
|
33 |
ZHANG Ning, WEI Xin, YANG Qirong, et al. Numerical simulation and experimental study of the growth characteristics of particulate fouling on pipe heat transfer surface[J]. Heat and Mass Transfer, 2019, 55(3): 687-698.
|