1 |
陈蔚燕, 师进生, 李俊良. 调节剂与稀土物质互作对种子发芽和生根的影响[J]. 中国稀土学报, 2021, 39(6): 935-941.
|
|
CHEN Weiyan, SHI Jinsheng, LI Junliang. Effect of interaction between regulators and rare earth elements on seed germination and rooting[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(6): 935-941.
|
2 |
CHIEN S S. Peculiar effects of barium, strontium, and cerium on spirogyra[J]. Botanical Gazette, 1917, 63(5): 406-409.
|
3 |
AGATHOKLEOUS E, KITAO M, CALABRESE E J. Hormetic dose responses induced by lanthanum in plants[J]. Environmental Pollution, 2019, 244: 332-341.
|
4 |
游露, 安礼航, 刘敏超. 稀土铈对芥菜生理效应及其土壤酶系统影响研究[J]. 绿色科技, 2018(8): 75-78, 81.
|
|
YOU Lu, AN Lihang, LIU Minchao. Effect of cerium on physiological effects and soil enzymes of mustards[J]. Journal of Green Science and Technology, 2018(8): 75-78, 81.
|
5 |
CUI Wenwen, KAMRAN Muhammad, SONG Quanhao, et al. Lanthanum chloride improves maize grain yield by promoting photosynthetic characteristics, antioxidants enzymes and endogenous hormone at reproductive stages[J]. Journal of Rare Earths, 2019, 37(7): 781-790.
|
6 |
柴瑞娟, 黄彬, 王玉良. 镧和铈对蜡状芽孢杆菌抗性、生长及胞内核酸的影响[J]. 微生物学通报, 2013, 40(12): 2246-2253.
|
|
CHAI Ruijuan, HUANG Bin, WANG Yuliang. Effect on resistance, growth and DNA of Bacillus cereus treated by La3+ and Ce3+ [J]. Microbiology China, 2013, 40(12): 2246-2253.
|
7 |
王琦. 稀土元素对Pycnoporus sp. SYBC-L3产漆酶的影响与漆酶催化偶氮染料脱色的研究[D]. 无锡: 江南大学, 2019.
|
|
WANG Qi. Effect of rare earth elements on the production of laccase by pycnoporus sp. SYBC-L3 and the study of decolorization of azo dyes by laccase[D]. Wuxi: Jiangnan University, 2019.
|
8 |
OCHI Kozo, TANAKA Yukinori, TOJO Shigeo. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(2): 403-414.
|
9 |
胡谦. 三种典型纳米颗粒对土壤微生物及酶活性的对比研究[D]. 南京: 东南大学, 2018.
|
|
HU Qian. Comparative study on the effect of three typical nanoparticles on soil bacterial and enzymes activities[D]. Nanjing: Southeast University, 2018.
|
10 |
牛佳钰. 秸秆源木质纤维素在好氧堆肥化中的降解研究[D]. 无锡: 江南大学, 2022.
|
|
NIU Jiayu. Degradation of lignocellulose from corn straw during aerobic composting[D]. Wuxi: Jiangnan University, 2022.
|
11 |
FUKUDA Hiroo, KOMAMINE Atsushi. Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans[J]. Planta, 1982, 155(5): 423-430.
|
12 |
MORRISON I M. A semi-micro method for the determination of lignin and its use in predicting the digestibility of forage crops[J]. Journal of the Science of Food and Agriculture, 1972, 23(4): 455-463.
|
13 |
HATFIELD R, FUKUSHIMA R S. Can lignin be accurately measured? [J]. Crop Science, 2005, 45(3): 832-839.
|
14 |
GANGULY Preetha, SENGUPTA Shubhalakshmi, Papita DAS, et al. Valorization of food waste: Extraction of cellulose, lignin and their application in energy use and water treatment[J]. Fuel, 2020, 280: 118581.
|
15 |
SRIVASTAVA Megha, SENGUPTA Shubhalakshmi, Papita DAS, et al. Novel pre treatment techniques for extraction of fermentable sugars from natural waste materials for bio ethanol production[J]. International Journal of Environmental Sciences & Natural Resources, 2017, 7(3): 2572-1119.
|
16 |
程丰, 何青山, 宋明淦, 等. 氨三乙酸对好氧堆肥过程中氮素保存效果的影响[J]. 环境工程学报, 2021, 15(2): 699-708.
|
|
CHENG Feng, HE Qingshan, SONG Minggan, et al. Effect of nitrilotriacetic acid on nitrogen conservation during aerobic composting[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 699-708.
|
17 |
LAI Chenhuan, TU Maobing, LI Mi, et al. Remarkable solvent and extractable lignin effects on enzymatic digestibility of organosolv pretreated hardwood[J]. Bioresource Technology, 2014, 156: 92-99.
|
18 |
ZHU Daochen, LIANG Nian, ZHANG Rongxian, et al. Insight into depolymerization mechanism of bacterial laccase for lignin[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12920-12933.
|
19 |
POLLEGIONI Loredano, TONIN Fabio, ROSINI Elena. Lignin-degrading enzymes[J]. The FEBS Journal, 2015, 282(7): 1190-1213.
|
20 |
WANG Q, AWASTHI M K, ZHAO J, et al. Improvement of pig manure compost lignocellulose degradation, organic matter humification and compost quality with medical stone[J]. Bioresource Technology, 2017, 243: 771-777.
|
21 |
AWASTHI M K, DUAN Y, AWASTHI S K, et al. Effect of biochar and bacterial inoculum additions on cow dung composting[J]. Bioresource Technology, 2020, 297: 122407.
|
22 |
XU Jiaqi, JIANG Zhiwei, LI Mingqi, et al. A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting[J]. Journal of Environmental Management, 2019, 243: 240-249.
|
23 |
CHOIŃSKA-PULIT A, ŁABA W, RODZIEWICZ A. Enhancement of pig bristles waste bioconversion by inoculum of keratinolytic bacteria during composting[J]. Waste Management, 2019, 84: 269-276.
|