化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2219-2232.DOI: 10.16085/j.issn.1000-6613.2022-1382
宋民航1,2(), 赵立新1,3(), 徐保蕊1,3, 刘琳1,3, 张爽1,3
收稿日期:
2022-07-22
修回日期:
2022-11-01
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
赵立新
作者简介:
宋民航(1986—),男,博士,副研究员,主要从事多相旋流分离及燃料低碳清洁高效燃烧方面的研究工作。E-mail:songminhang@ 126.com。
基金资助:
SONG Minhang1,2(), ZHAO Lixin1,3(), XU Baorui1,3, LIU Lin1,3, ZHANG Shuang1,3
Received:
2022-07-22
Revised:
2022-11-01
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZHAO Lixin
摘要:
随着工业化进程的飞速前进,适用于分离多相不互溶介质的旋流分离器已广泛应用于石化、环保等重点行业。为了提高旋流分离器在全粒径范围内分散相的分离效率,涌现出了多种旋流分离过程强化技术。其中,对入口分散相进行重排序的旋流强化技术因具有加工成本及运行费用低、易于实施、强化效果明显等优势,展现出了重要的应用价值及推广前景。本文聚焦于入口分散相重排序的旋流强化技术,对基于惯性力场和离心力场进行分散相重排序的旋流强化原理、排序器结构类型及应用于液-液、固-液、气-固两相的分散相重排序强化技术及研究成果进行了系统的分析和总结。在此基础上,从组织构建分散相重排序后的多股液流,选择促进多股液流间协同高效分离的旋流场入射方案,强化分散相移动过程中的聚并长大和/或惯性碰撞等角度出发,总结了分散相重排序的技术路线并进行研究展望,从而指导旋流器的旋流分离过程强化及优化设计,助力于旋流分离效率的深度提升。
中图分类号:
宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 基于入口分散相重排序的旋流强化分离研究进展[J]. 化工进展, 2023, 42(5): 2219-2232.
SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232.
沿径向受力 | 沿轴向受力 | ||
---|---|---|---|
分散相所受离心力FC | 分散相所受重力Fg | ||
分散相所受沿径向压力梯度力FB | 分散相所受沿轴向压力梯度力Fb | ||
分散相所受沿径向斯托克斯阻力FD | 分散相所受沿轴向斯托克斯阻力Fd | ||
分散相沿径向受力平衡关系式 | 分散相沿轴向受力平衡关系式 | ||
分散相粒径d与其径向位置r的关系 | 分散相粒径d与轴向相对速率uz 的关系 |
表1 分散相迁移过程中的主要受力情况
沿径向受力 | 沿轴向受力 | ||
---|---|---|---|
分散相所受离心力FC | 分散相所受重力Fg | ||
分散相所受沿径向压力梯度力FB | 分散相所受沿轴向压力梯度力Fb | ||
分散相所受沿径向斯托克斯阻力FD | 分散相所受沿轴向斯托克斯阻力Fd | ||
分散相沿径向受力平衡关系式 | 分散相沿轴向受力平衡关系式 | ||
分散相粒径d与其径向位置r的关系 | 分散相粒径d与轴向相对速率uz 的关系 |
分离情况编号 | 分散相 | 连续相 | 密度关系 | 利用分散相移动过程中的 聚并长大 | 利用分散相移动过程中的 惯性碰撞 | 布置各股液流于合适的 旋流场入射位置 |
---|---|---|---|---|---|---|
1 | 液 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
2 | 液 | 液 | ρ分散相>ρ连续相 | √ | × | √ |
3 | 固 | 液 | ρ分散相>ρ连续相 | × | √ | √ |
4 | 固 | 气 | ρ分散相>ρ连续相 | × | √ | √ |
5 | 气 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
6 | 液 | 气 | ρ分散相>ρ连续相 | √ | × | √ |
表2 分散相重排过程中可采用的强化分离思路
分离情况编号 | 分散相 | 连续相 | 密度关系 | 利用分散相移动过程中的 聚并长大 | 利用分散相移动过程中的 惯性碰撞 | 布置各股液流于合适的 旋流场入射位置 |
---|---|---|---|---|---|---|
1 | 液 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
2 | 液 | 液 | ρ分散相>ρ连续相 | √ | × | √ |
3 | 固 | 液 | ρ分散相>ρ连续相 | × | √ | √ |
4 | 固 | 气 | ρ分散相>ρ连续相 | × | √ | √ |
5 | 气 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
6 | 液 | 气 | ρ分散相>ρ连续相 | √ | × | √ |
1 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
LIU He, GAO Yang, PEI Xiaohan, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
2 | 肖学. 水力旋流器应用的现状及发展趋势[J]. 化工设备与管道, 2018, 55(3): 37-41. |
XIAO Xue. Current situation and developing trend of hydrocyclone[J]. Process Equipment & Piping, 2018, 55(3): 37-41. | |
3 | KHAROUA N, KHEZZAR L, NEMOUCHI Z. Hydrocyclones for deoiling applications—A review[J]. Petroleum Science and Technology, 2010, 28(7): 738-755. |
4 | 于文轩, 冯瀚元. “双碳”目标下能效“领跑者”制度的完善路径[J]. 行政管理改革, 2021(10): 40-49. |
YU Wenxuan, FENG Hanyuan. Improving efficiency of top-runner program under the target of carbon peaking and neutralization[J]. Administration Reform, 2021(10): 40-49. | |
5 | 王硕. 六部门发布《工业能效提升行动计划》[N]. 人民政协报, 2022-07-07(005). |
WANG Shuo. Six departments release “Action Plan for Improving Industrial Energy Efficiency” [N]. CPPCC Daily, 2022-07-07(005). | |
6 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
FU Pengbo, HUANG Yuan, WANG Jiangang, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
7 | 宋民航, 赵立新, 徐保蕊, 等. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603. |
SONG Minhang, ZHAO Lixin, XU Baorui, et al. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603. | |
8 | GOMEZ Carlos, CALDENTEY Juan, WANG Shoubo, et al. Oil/water separation in liquid/liquid hydrocyclones (LLHC): Part 1—Experimental investigation[J]. SPE Journal, 2002, 7(4): 353-372. |
9 | LI Feng, LIU Peikun, YANG Xinghua, et al. Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity[J]. Powder Technology, 2020, 375: 337-351. |
10 | PETTY C A, PARKS S M. Flow structures within miniature hydrocyclones[J]. Minerals Engineering, 2004, 17(5): 615-624. |
11 | 韩丽艳. 同向出流倒锥式旋流器结构设计及分离特性研究[D]. 大庆: 东北石油大学, 2013. |
HAN Liyan. Structure design and separation characteristic study of a co-rotating outflow reverse-cone hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013. | |
12 | 周先桃, 雷明光, 褚良银, 等. 高效水力旋流器: CN2522174Y[P]. 2002-11-27. |
ZHOU Xiantao, LEI Mingguang, CHU Liangyin, et al. Efficient hydraulic swirler: CN2522174Y[P]. 2002-11-27. | |
13 | DELGADILLO Jose A, RAJAMANI Raj K. A comparative study of three turbulence-closure models for the hydrocyclone problem[J]. International Journal of Mineral Processing, 2005, 77(4): 217-230. |
14 | ZHAO Lixin, JIANG Minghu, LI Feng. Experimental study on the separation performance of air-injected de-oil hydrocyclones[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 772-778. |
15 | 赵立新, 蒋明虎, 刘书孟. 微孔材料对气携式液-液水力旋流器性能的影响[J]. 石油机械, 2006, 34(10): 5-7, 2. |
ZHAO Lixin, JIANG Minghu, LIU Shumeng. Influence of micro-pore materials on the air-injected hydrocyclone[J]. China Petroleum Machinery, 2006, 34(10): 5-7, 2. | |
16 | NUNES Sirlene A, MAGALHÃES Hortência L F, DE FARIAS NETO Severino R, et al. Impact of permeable membrane on the hydrocyclone separation performance for oily water treatment[J]. Membranes, 2020, 10(11): 350. |
17 | BAI Zhishan, WANG Hualin, TU Shan-Tung. Oil-water separation using hydrocyclones enhanced by air bubbles[J]. Chemical Engineering Research and Design, 2011, 89(1): 55-59. |
18 | BAI Zhishan, WANG Hualin, TU Shan-Tung. Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles[J]. Chemical Engineering & Technology, 2009, 32(1): 55-63. |
19 | Parviz ALI-ZADE, USTUN Ozgur, VARDARLI Feyzullah, et al. Development of an electromagnetic hydrocyclone separator for purification of wastewater[J]. Water and Environment Journal, 2008, 22(1): 11-16. |
20 | GAY J C, TRIPONEY G, BEZARD C, et al. Rotary cyclone will improve oily water treatment and reduce space requirement/weight on offshore platforms[C]//SPE Offshore Europe, Aberdeen, United Kingdom. SPE, 1987. |
21 | ZHAO Lixin, LI Feng, MA Zhanzhao, et al. Theoretical analysis and experimental study of dynamic hydrocyclones[J]. Journal of Energy Resources Technology, 2010, 132(4): 042901-1. |
22 | 钟秋月. 管柱式气液固三相旋流分离器的性能研究[D]. 大连: 大连理工大学, 2013. |
ZHONG Qiuyue. Performance research on the gas liquid solid triphase cylindrical cyclone separator[D]. Dalian: Dalian University of Technology, 2013. | |
23 | NENU Romanus Krisantus TUE, YOSHIDA Hideto, FUKUI Kunihiro, et al. Separation performance of sub-micron silica particles by electrical hydrocyclone[J]. Powder Technology, 2009, 196(2): 147-155. |
24 | STRASSER Wayne. Cyclone-ejector coupling and optimisation[J]. Progress in Computational Fluid Dynamics, an International Journal, 2010, 10(1): 19. |
25 | GONG Haifeng, YU Bao, DAI Fei, et al. Simulation on performance of a demulsification and dewatering device with coupling double fields: Swirl centrifugal field and high-voltage electric field[J]. Separation and Purification Technology, 2018, 207: 124-132. |
26 | LU Hao, LIU Yiqian, CAI Jingbo, et al. Treatment of offshore oily produced water: Research and application of a novel fibrous coalescence technique[J]. Journal of Petroleum Science and Engineering, 2019, 178: 602-608. |
27 | WAHI Rafeah, CHUAH Luqman Abdullah, CHOONG Thomas Shean Yaw, et al. Oil removal from aqueous state by natural fibrous sorbent: An overview[J]. Separation and Purification Technology, 2013, 113: 51-63. |
28 | YONG Jiale, FANG Yao, CHEN Feng, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155. |
29 | WANG Zhibin, CHU Liangyin, CHEN Wenmei, et al. Experimental investigation of the motion trajectory of solid particles inside the hydrocyclone by a Lagrange method[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 1-9. |
30 | KOBAYASHI Mikihiko, FUDOUZI Hiroshi, EGASHIRA Mitsuru, et al. Particle arrangement and its application[J]. Materials & Design, 2000, 21(6): 571-574. |
31 | 刘海生, 艾志久, 贺会群, 等. 单锥式油水分离旋流器内流场的数值模拟[J]. 西安石油大学学报(自然科学版), 2006, 21(6): 83-86, 118. |
LIU Haisheng, AI Zhijiu, HE Huiqun, et al. Numerical simulation of the inner flow field in the single-cone hydrocyclone for oil-water separation[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2006, 21(6): 83-86, 118. | |
32 | 赵庆国, 薛敦松. 单锥水力旋流器的迁移率模型[J]. 石油大学学报(自然科学版), 2000, 24(6): 62-65, 3. |
ZHAO Qingguo, XUE Dunsong. A computational model for migration probability of single cone liquid liquid hydrocyclones[J]. Journal of the University of Petroleum, China, 2000, 24(6): 62-65, 3. | |
33 | FU Pengbo, WANG Fei, MA Liang, et al. Fine particle sorting and classification in the cyclonic centrifugal field[J]. Separation and Purification Technology, 2016, 158: 357-366. |
34 | 龚升高. 湍流条件下液滴或气泡破裂和聚并过程研究[D]. 湘潭: 湘潭大学, 2017. |
GONG Shenggao. Study on the breakage and coalescence processes of droplets/bubbles under turbulent conditions[D]. Xiangtan: Xiangtan University, 2017. | |
35 | 赵立新, 宋民航, 杨宏燕, 等. 基于粒径选择的水力旋流分离装置: CN109290075A[P]. 2019-02-01. |
ZHAO Lixin, SONG Minhang, YANG Hongyan, et al. Hydraulic cyclone separating device based on particle size selection: CN109290075A[P]. 2019-02-01. | |
36 | LIU Lin, ZHAO Lixin, SUN Yian, et al. Separation performance of hydrocyclones with medium rearrangement internals[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105642. |
37 | 赵立新, 蒋明虎, 徐保蕊, 等. 轴流式反转入口流道旋流器: CN104815768A[P]. 2015-08-05. |
ZHAO Lixin, JIANG Minghu, XU Baorui, et al. Axial-flow-type inverted inlet flow channel swirler: CN104815768A[P]. 2015-08-05. | |
38 | ZHAO Lixin, XU Baorui, JIANG Minghu, et al. Flow-field distribution and parametric-optimisation analysis of spiral-tube separators[J]. Chemical Engineering Research and Design, 2012, 90(8): 1011-1018. |
39 | 李权, 林茹亭, 王宗勇, 等. 聚结构件形式对管式油水分离器油出口含油率的影响[J]. 化学工业与工程, 2022. DOI: 10.13353/j.issn.1004.9533.20220105 . |
LI Quan, LIN Ruting, WANG Zongyong, et al. Influence of the form of coalescers on the oil content of the oil outlet of tubular oil-water separator [J]. Chemical Industry and Engineering, 2022. DOI: 10.13353/j.issn.1004.9533.20220105 . | |
40 | 马骏, 何亚其, 白健华, 等. 入口结构对粒径重构旋流器分离性能影响分析[J]. 机械科学与技术, 2021, 40(9): 1347-1354. |
MA Jun, HE Yaqi, BAI Jianhua, et al. Analyzing impact of inlet structure on performance of hydrocyclone with droplet size reconstruction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1347-1354. | |
41 | 宋民航, 赵岩, 邵春岩, 等. 一种粒径分级聚结式旋流器: CN110280403A[P]. 2019-09-27. |
SONG Minhang, ZHAO Yan, SHAO Chunyan, et al. Particle size grading coalescence type hydrocyclones: CN110280403A[P]. 2019-09-27. | |
42 | YANG Qiang, Wenjie LYU, MA Liang, et al. CFD study on separation enhancement of mini-hydrocyclone by particulate arrangement[J]. Separation and Purification Technology, 2013, 102: 15-25. |
43 | LIU P-K, CHU L-Y, WANG J, et al. Enhancement of hydrocyclone classification efficiency for fine particles by introducing a volute chamber with a pre-sedimentation function[J]. Chemical Engineering & Technology, 2008, 31(3): 474-478. |
44 | 付鹏波, 汪华林, 王飞, 等. 进口颗粒排序型旋流器: CN106269315A[P]. 2017-01-04. |
FU Pengbo, WANG Hualin, WANG Fei, et al. Inlet particle sequencing type swirler: CN106269315A[P]. 2017-01-04. | |
45 | FU Pengbo, WANG Fei, YANG Xuejing, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51(3): 1587-1594. |
46 | 赵传伟, 李增亮, 董祥伟, 等. 井下双级串联式水力旋流器数值模拟与实验[J]. 石油学报, 2014, 35(3): 551-557. |
ZHAO Chuanwei, LI Zengliang, DONG Xiangwei, et al. Numerical simulation and experiment of downhole two-stage tandem hydrocyclone[J]. Acta Petrolei Sinica, 2014, 35(3): 551-557. | |
47 | LIU Yucheng, CHENG Qixuan, ZHANG Bo, et al. Three-phase hydrocyclone separator—A review[J]. Chemical Engineering Research and Design, 2015, 100: 554-560. |
[1] | 朱明军, 胡大鹏. 操作参数对三相卧螺离心机油水砂分离性能影响模拟及实验分析[J]. 化工进展, 2022, 41(10): 5188-5199. |
[2] | 宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603. |
[3] | 滕建鑫, 杨春英, 贺征. 惯性分离装置的性能分析及结构优化[J]. 化工进展, 2019, 38(05): 2074-2084. |
[4] | 蒋明虎, 谭放, 金淑芹, 龙桂兰, 陈桂芹, 徐保蕊. 基于Fluent网格变形的旋流器的形状优化[J]. 化工进展, 2016, 35(08): 2355-2361. |
[5] | 陈俊冬, 宋金仓, 曾川, 邹鹏程, 王晓天, 陈海焱. 旋风分离器分离性能的数值模拟与分析[J]. 化工进展, 2016, 35(05): 1360-1365. |
[6] | 孔祥功, 陈家庆, 姬宜朋, 王春升, 张明, 尚超, 蔡小垒, 刘美丽. 大处理量紧凑型气浮装置的数值模拟[J]. 化工进展, 2016, 35(03): 733-740. |
[7] | 袁惠新,方毅,付双成. 天然气脱蜡旋风分离器分离效率的模拟[J]. 化工进展, 2014, 33(01): 43-49. |
[8] | 詹 昊1,2,徐纯刚1,2,李小森1,颜克凤1. TBAB和CP双添加剂水合物法分离烟气中的CO2[J]. 化工进展, 2012, 31(07): 1442-1448. |
[9] | 潘传九,靳兆文,冯 秀. 旋风分离器的螺旋导流和防返混[J]. 化工进展, 2012, 31(06): 1215-1219. |
[10] | 吕文杰,杨 强,汪华林,沈其松,左 鹏. 石灰乳制备过程中的石灰渣分离方法及设备[J]. 化工进展, 2012, 31(04): 943-947. |
[11] | 徐纯刚1,2,李小森1,陈朝阳1. 水合物法分离二氧化碳的研究现状 [J]. 化工进展, 2011, 30(4): 701-. |
[12] | 康 勇. 油-水旋流分离器计算流体力学模拟效果分析 [J]. 化工进展, 2009, 28(3): 374-. |
[13] | 杨利民. 两相流新型分离器——T形三通管的研究进展 [J]. 化工进展, 2008, 27(1): 45-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |