化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1739-1759.DOI: 10.16085/j.issn.1000-6613.2022-1070
刘佳1,2(), 梁德青1(), 李君慧1,3, 林德才1,3, 吴思婷1,2, 卢富勤1,2
收稿日期:
2022-06-08
修回日期:
2022-10-22
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
梁德青
作者简介:
刘佳(1992—),女,博士,研究方向为天然气水合物。E-mail:yqcylj@126.com。
基金资助:
LIU Jia1,2(), LIANG Deqing1(), LI Junhui1,3, LIN Decai1,3, WU Siting1,2, LU Fuqin1,2
Received:
2022-06-08
Revised:
2022-10-22
Online:
2023-04-25
Published:
2023-05-08
Contact:
LIANG Deqing
摘要:
海洋油气田的高效、安全开采是践行国家深海战略、探索未来战略能源的必要手段。在深海低温、高压环境下运行的多相混输管道的堵塞已成为能源行业安全生产和流动保障的棘手问题,而天然气水合物的快速形成是造成这一问题的主要诱因。明晰油水体系水合物浆液的堵塞机理,开发设计绿色、环保的低剂量水合物抑制剂,掌握浆液的流动特征,将为深水油田多相混输管道的流动保障提供理论基础和技术指导。为此,本文从水合物堵塞过程、化学法防治以及水合物浆液的流动特性等方面总结概括了油水体系水合物浆液的流动保障研究进展。油水体系水合物堵塞主要由水合物的生长、聚集、管壁黏附和着床沉积造成,文章提出:应量化水合物生长、聚集、管壁黏附和着床沉积等因素对流动阻力和管道堵塞的影响,建立科学的工业管道水合物堵塞风险评估理论体系;借助微观尺度实验和分子动力学模拟,厘清不同类型的动力学抑制剂(KHIs)抑制机理和防聚剂(AAs)防聚机理;将实验探索、理论分析和数值模拟相结合,解耦颗粒微观行为与流场宏观物理参数间的关系,定量表征浆液流变性和流动阻力。
中图分类号:
刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759.
LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759.
154 | FROSTMAN L M, PRZYBYLINSKI J L. Successful applications of anti-agglomerant hydrate inhibitors[C]//SPE International Symposium on Oilfield Chemistry. Houston: SPE, 2001. |
155 | MEHTA A P, HEBERT P B, CADENA E R, et al. Fulfilling the promise of low-dosage hydrate inhibitors: journey from academic curiosity to successful field implementation[J]. SPE Production & Facilities, 2003, 18(1): 73-79. |
156 | 任悦萌, 闫柯乐. 水合物阻聚剂性能评价方法研究进展[J]. 应用化工, 2021, 50(5): 1335-1340. |
REN Yuemeng, YAN Kele. Research progress on performance evaluation methods of hydrate anti-agglomerant[J]. Applied Chemical Industry, 2021, 50(5): 1335-1340. | |
157 | Dalton YORK J, FIROOZABADI Abbas. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration[J]. The Journal of Physical Chemistry B, 2008, 112(3): 845-851. |
158 | SUN Minwei, FIROOZABADI Abbas. New surfactant for hydrate anti-agglomeration in hydrocarbon flowlines and seabed oil capture[J]. Journal of Colloid and Interface Science, 2013, 402: 312-319. |
159 | CHEN Jun, SUN Changyu, PENG Baozi, et al. Screening and compounding of gas hydrate anti-agglomerants from commercial additives through morphology observation[J]. Energy & Fuels, 2013, 27(5): 2488-2496. |
160 | PENG Baozi, CHEN Jun, SUN Changyu, et al. Flow characteristics and morphology of hydrate slurry formed from (natural gas+diesel oil/condensate oil+water) system containing anti-agglomerant[J]. Chemical Engineering Science, 2012, 84: 333-344. |
161 | DONG Sanbao, LI Mingzhong, FIROOZABADI Abbas. Effect of salt and water cuts on hydrate anti-agglomeration in a gas condensate system at high pressure[J]. Fuel, 2017, 210: 713-720. |
162 | DONG Sanbao, FIROOZABADI Abbas. Hydrate anti-agglomeration and synergy effect in normal octane at varying water cuts and salt concentrations[J]. The Journal of Chemical Thermodynamics, 2018, 117: 214-222. |
163 | DHOLABHAL P D, KALOGERAKIS Nicolas, BISHNOL P R. Evaluation of gas hydrate formation and deposition in condensate pipelines: pilot plant studies[J]. SPE Production & Facilities, 1993, 8(3): 185-190. |
164 | 陈玉川, 史博会, 李文庆, 等. 水合物浆液非牛顿特性与黏度模型研究进展[J]. 化工进展, 2019, 38(6): 2682-2696. |
1 | U.S. Energy Information Administration (EIA). International energy outlook 2021[R/OL]. [2022-06-08]. |
2 | 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4): 727-736. |
TONG Xiaoguang, ZHANG Guangya, WANG Zhaoming, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4): 727-736. | |
3 | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. |
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. | |
4 | SLOAN E Dendy, Carolyn A KOH, Amadeu K SUM, et al. Natural gas hydrates in flow assurance [M]. Oxford: Gulf Professional Publishing, 2010. |
5 | LI Huiyuan, ZHANG Jinjun, XU Qinggong, et al. Influence of asphaltene on wax deposition: deposition inhibition and sloughing[J]. Fuel, 2020, 266: 117047. |
6 | ALNAIMAT Fadi, ZIAUDDIN Mohammed. Wax deposition and prediction in petroleum pipelines[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106385. |
7 | RIEDEMAN James S, KADASALA Naveen Reddy, WEI Alexander, et al. Characterization of asphaltene deposits by using mass spectrometry and Raman spectroscopy[J]. Energy & Fuels, 2016, 30(2): 805-809. |
8 | OLIVEIRA Davi F, SANTOS Ramon S, MACHADO Alessandra S, et al. Characterization of scale deposition in oil pipelines through X-Ray Microfluorescence and X-Ray microtomography[J]. Applied Radiation and Isotopes, 2019, 151: 247-255. |
9 | LIU Zhiming, LI Yuxing, WANG Wuchang, et al. Wax and wax-hydrate deposition characteristics in single-, two-, and three-phase pipelines: A review[J]. Energy & Fuels, 2020, 34(11): 13350-13368. |
10 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2019: 1-249. |
164 | CHEN Yuchuan, SHI Bohui, LI Wenqing, et al. Progress of the non-Newtonian properties of hydrate slurry and viscosity model[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2682-2696. |
165 | YAN Kele, SUN Changyu, CHEN Jun, et al. Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus[J]. Chemical Engineering Science, 2014, 106: 99-108. |
166 | WEBB Eric B, Carolyn A KOH, LIBERATORE Matthew W. Rheological properties of methane hydrate slurries formed from AOT+ water+ oil microemulsions[J]. Langmuir, 2013, 29(35): 10997-11004. |
167 | WEBB Eric B, Carolyn A KOH, LIBERATORE Matthew W. High pressure rheology of hydrate slurries formed from water-in-mineral oil emulsions[J]. Industrial & Engineering Chemistry Research, 2014, 53(17): 6998-7007. |
168 | WEBB Eric B, RENSING Patrick J, Carolyn A KOH, et al. High-pressure rheology of hydrate slurries formed from water-in-oil emulsions[J]. Energy & Fuels, 2012, 26(6): 3504-3509. |
169 | QIN Yahua, AMAN Zachary M, PICKERING Paul F, et al. High pressure rheological measurements of gas hydrate-in-oil slurries[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 248: 40-49. |
170 | 李文庆. 多相体系水合物浆液管流规律实验研究[D]. 北京: 中国石油大学(北京), 2012. |
LI Wenqing. Experimental study on multiphase flow mechanism of hydrate slurry in pipes[D]. Beijing: China University of Petroleum(Beijing), 2012. | |
171 | SHEN Xiaodong, HOU Guodong, DING Jiaxiang, et al. Flow characteristics of methane hydrate slurry in the transition region in a high-pressure flow loop[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 64-73. |
172 | BALAKIN Boris V, Simon LO, KOSINSKI Pawel, et al. Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique[J]. Chemical Engineering Science, 2016, 153: 45-57. |
173 | SINQUIN A, PALERMO T, PEYSSON Y. Rheological and flow properties of gas hydrate suspensions[J]. Oil & Gas Science and Technology, 2004, 59(1): 41-57. |
174 | DIEKER L E, TAYLOR C J, KOH C, et al. Micromechanical adhesion force measurements between cyclopentane hydrate particles[C]//6th International Conference on Gas Hydrates. Vancouver: University of British Columbia Library, 2008: 1-4. |
175 | MAJID Ahmad A A, WU David T, Carolyn A KOH. A perspective on rheological studies of gas hydrate slurry properties[J]. Engineering, 2018, 4(3): 321-329. |
176 | MAJID Ahmad A A, WU David T, Carolyn A KOH. New in situ measurements of the viscosity of gas clathrate hydrate slurries formed from model water-in-oil emulsions[J]. Langmuir, 2017, 33(42): 11436-11445. |
177 | SHI Bohui, CHAI Shuai, WANG Linyan, et al. Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives[J]. Fuel, 2016, 185: 323-338. |
178 | SANTAMARı´A-HOLEK I, MENDOZA Carlos I. The rheology of concentrated suspensions of arbitrarily-shaped particles[J]. Journal of Colloid and Interface Science, 2010, 346(1): 118-126. |
179 | QIN Yahua, PICKERING Paul F, JOHNS Michael L, et al. Rheological method to describe metastable hydrate-in-oil slurries[J]. Energy & Fuels, 2020, 34(7): 7955-7964. |
180 | AKHFASH Masoumeh, AMAN Zachary M, Sang Yoon AHN, et al. Gas hydrate plug formation in partially-dispersed water-oil systems[J]. Chemical Engineering Science, 2016, 140: 337-347. |
181 | BALAKIN B V, PEDERSEN H, KILINC Z, et al. Turbulent flow of Freon R11 hydrate slurry[J]. Journal of Petroleum Science and Engineering, 2010, 70(3/4): 177-182. |
182 | LIU Yang, SHI Bohui, DING Lin, et al. Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer[J]. Fuel, 2019, 244: 282-295. |
183 | LIU Zheyuan, VASHEGHANI FARAHANI Mehrdad, YANG Mingjun, et al. Hydrate slurry flow characteristics influenced by formation, agglomeration and deposition in a fully visual flow loop[J]. Fuel, 2020, 277: 118066. |
184 | 史博会, 宋素合, 易成高, 等. 水合物流动环路实验研究进展[J]. 化工进展, 2018, 37(4): 1347-1363. |
SHI Bohui, SONG Suhe, YI Chenggao, et al. Experimental research progress on hydrate flow loops[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1347-1363. | |
185 | SUN Zhongwang, SHI Kangji, GUAN Dawei, et al. Current flow loop equipment and research in hydrate-associated flow assurance[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104276. |
186 | 姚海元, 李清平, 陈光进, 等. 加入防聚剂后水合物浆液流动压降规律研究[J]. 化学工程, 2009, 37(12): 20-23. |
10 | CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2019: 1-249. |
11 | SLOAN E Dendy, Carolyn A KOH. Clathrate Hydrates of natural gases[M]. New York: CRC Press, 2007. |
12 | Yining LYU, SUN Changyu, LIU Bei, et al. A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion[J]. AIChE Journal, 2017, 63(3): 1010-1023. |
13 | TURNER Douglas J, MILLER Kelly T, SLOAN E Dendy. Methane hydrate formation and an inward growing shell model in water-in-oil dispersions[J]. Chemical Engineering Science, 2009, 64(18): 3996-4004. |
14 | AMAN Zachary M, Carolyn A KOH. Interfacial phenomena in gas hydrate systems[J]. Chemical Society Reviews, 2016, 45(6): 1678-1690. |
15 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J]. Chemical Engineering Science, 2017, 158: 480-489. |
16 | ZERPA Luis E, SLOAN E Dendy, Amadeu K SUM, et al. Overview of CSMHyK: a transient hydrate formation model[J]. Journal of Petroleum Science and Engineering, 2012, 98/99: 122-129. |
17 | 柳扬, 史博会, 吕晓方, 等. 油基水基及部分分散体系水合物堵管机理[J]. 科学通报, 2017, 62(13): 1365-1376. |
LIU Yang, SHI Bohui, Xiaofang LYU, et al. Hydrate plugging mechanisms of oil-dominated, water-dominated and partially dispersed system[J]. Chinese Science Bulletin, 2017, 62(13): 1365-1376. | |
18 | TURNER Douglas J. Clathrate hydrate formation in water-in-oil dispersions[D]. Golden: Colorado School of Mines, 2005. |
19 | HASSANPOURYOUZBAND Aliakbar, JOONAKI Edris, VASHEGHANI FARAHANI Mehrdad, et al. Gas hydrates in sustainable chemistry[J]. Chemical Society Reviews, 2020, 49(15): 5225-5309. |
20 | PERRIN Andrea, MUSA Osama M, STEED Jonathan W. The chemistry of low dosage clathrate hydrate inhibitors[J]. Chemical Society Reviews, 2013, 42(5): 1996-2015. |
186 | YAO Haiyuan, LI Qingping, CHEN Guangjin, et al. Experimental study of pressure drop in hydrate slurry flow by adding anti-agglomerant[J]. Chemical Engineering (China), 2009, 37(12): 20-23. |
187 | CHEN Yuchuan, GONG Jing, SHI Bohui, et al. Investigation into methane hydrate reformation in water-dominated bubbly flow[J]. Fuel, 2020, 263: 116691. |
188 | FU Weiqi, YU Jing, XIAO Yang, et al. A pressure drop prediction model for hydrate slurry based on energy dissipation under turbulent flow condition[J]. Fuel, 2022, 311: 122188. |
189 | SHI X J, ZHANG P. Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes[J]. Energy, 2016, 99: 58-68. |
190 | SHI X J, ZHANG P. Two-phase flow and heat transfer characteristics of tetra-n-butyl ammonium bromide clathrate hydrate slurry in horizontal 90° elbow pipe and U-pipe[J]. International Journal of Heat and Mass Transfer, 2016, 97: 364-378. |
191 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modelling[J]. Journal of Petroleum Science and Engineering, 2018, 169: 393-404. |
192 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of pipeline hydrate particle agglomeration based on population balance theory[J]. Journal of Natural Gas Science and Engineering, 2018, 51: 251-261. |
193 | SHI Bohui, LIU Yang, DING Lin, et al. New simulator for gas-hydrate slurry stratified flow based on the hydrate kinetic growth model[J]. Journal of Energy Resources Technology, 2019, 141(1): 012906. |
194 | SHI Guoyun, SONG Shangfei, SHI Bohui, et al. A new transient model for hydrate slurry flow in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108003. |
195 | DAVIES Simon R, BOXALL John A, DIEKER Laura E, et al. Predicting hydrate plug formation in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2010, 72(3/4): 302-309. |
196 | WANG Yan, Carolyn A KOH, Alejandro DAPENA J, et al. A transient simulation model to predict hydrate formation rate in both oil-and water-dominated systems in pipelines[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 126-134. |
197 | CHAUDHARI Piyush, ZERPA Luis E, Amadeu K SUM. A correlation to quantify hydrate plugging risk in oil and gas production pipelines based on hydrate transportability parameters[J]. Journal of Natural Gas Science and Engineering, 2018, 58: 152-161. |
198 | WANG Yan, Carolyn A KOH, WHITE Jake, et al. Hydrate formation management simulations with anti-agglomerants and thermodynamic inhibitors in a subsea tieback[J]. Fuel, 2019, 252: 458-468. |
21 | SLOAN E Dendy. A changing hydrate paradigm-from apprehension to avoidance to risk management[J]. Fluid Phase Equilibria, 2005, 228/229: 67-74. |
22 | 宋光春, 李玉星, 王武昌, 等. 油气管道水合物堵塞机理研究进展[J]. 化工进展, 2018, 37(7): 2473-2481. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Review of hydrate plugging mechanisms in oil and gas transport pipelines[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2473-2481. | |
23 | 王成, 刘妮, 孟斐. 油水体系水合物生成与堵塞机理研究进展[J]. 石油化工, 2021, 50(5): 496-504. |
WANG Cheng, LIU Ni, MENG Fei. Research progress on formation and plugging mechanism of hydrate in oil-water system[J]. Petrochemical Technology, 2021, 50(5): 496-504. | |
24 | RIPMEESTER John A, ALAVI Saman. Some Current challenges in clathrate hydrate science: nucleation, decomposition and the memory effect[J]. Current Opinion in Solid State and Materials Science, 2016, 20(6): 344-351. |
25 | ADAMOVA Tatyana P, STOPOREV Andrey S, MANAKOV Andrey Yu. Visual studies of methane hydrate formation on the water-oil boundaries [J]. Crystal Growth & Design, 2018, 18(11): 6713-6722. |
26 | STOPOREV Andrey S, SEMENOV Anton P, MEDVEDEV Vladimir I, et al. Visual observation of gas hydrates nucleation and growth at a water-organic liquid interface[J]. Journal of Crystal Growth, 2018, 485: 54-68. |
27 | Amadeu K SUM, Carolyn A KOH, SLOAN E Dendy. Developing a comprehensive understanding and model of hydrate in multiphase flow: from laboratory measurements to field applications[J]. Energy & Fuels, 2012, 26(7): 4046-4052. |
28 | NICHOLAS Joseph W, DIEKER Laura E, SLOAN E Dendy, et al. Assessing the feasibility of hydrate deposition on pipeline walls-adhesion force measurements of clathrate hydrate particles on carbon steel[J]. Journal of Colloid and Interface Science, 2009, 331(2): 322-328. |
29 | MU Liang, LI Shi, MA Qinglan, et al. Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion[J]. Fluid Phase Equilibria, 2014, 362: 28-34. |
30 | LI Shengli, WANG Yunfei, SUN Changyu, et al. Factors controlling hydrate film growth at water/oil interfaces[J]. Chemical Engineering Science, 2015, 135: 412-420. |
199 | Simon LO. CFD modelling of hydrate formation in oil-dominated flows[C]. Offshore Technology Conference, Houston, Texas: OTC, 2011. |
200 | BALAKIN Boris V, HOFFMANN Alex C, KOSINSKI Pawel. Population balance model for nucleation, growth, aggregation, and breakage of hydrate particles in turbulent flow[J]. AIChE Journal, 2010, 56(8): 2052-2062. |
201 | BALAKIN B V, HOFFMANN A C, KOSINSKI P. Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow[J]. Chemical Engineering Science, 2011, 66(4): 755-765. |
202 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of hydrate particle size distribution and hydrate particle bedding in pipeline flowing systems[J]. Journal of Dispersion Science and Technology, 2020, 41(7): 1051-1064. |
203 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Hydrate agglomeration modeling and pipeline hydrate slurry flow behavior simulation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 32-43. |
204 | BALAKIN Boris V, HOFFMANN Alex C, KOSINSKI Pawel. Coupling STAR-CD with a population-balance technique based on the classes method[J]. Powder Technology, 2014, 257: 47-54. |
205 | BALAKIN Boris V, KUTSENKO Kirill V, LAVRUKHIN Alexey A, et al. The collision efficiency of liquid bridge agglomeration[J]. Chemical Engineering Science, 2015, 137: 590-600. |
206 | LIU Jia, NING Min, DONG Ti, et al. Numerical study on flow characteristics of hydrate slurry liquid-solid two-phase flow considering the adhesion between particles[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104410. |
207 | 宋光春, 李玉星, 王武昌, 等. 基于群体平衡理论的管内水合物浆流动特性数值模拟[J]. 化工进展, 2018, 37(2): 561-568. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Numerical simulation of pipeline hydrate slurry flow behavior based on population balance theory[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 561-568. | |
208 | 宋光春, 李玉星, 王武昌, 等. 基于群体平衡理论的水合物聚集动力学模型[J]. 化工进展, 2018, 37(1): 80-87. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. A research on the dynamic model of hydrate agglomeration based on population balance theory[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 80-87. | |
31 | 宋光春, 李玉星, 王武昌, 等. 油气输送管线水合物沉积研究进展[J]. 化工进展, 2017, 36(9): 3164-3176. |
SONG Guangchun, LI Yuxing, WANG Wuchang, et al. A review on hydrate deposition in oil and gas transmission pipelines[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3164-3176. | |
32 | GRASSO Giovanny A. Investigation of hydrate formation and transportability in mutiphase flow systems[D]. Golden: Colorado School of Mines, 2015. |
33 | NICHOLAS Joseph W, Carolyn A KOH, SLOAN E Dendy, et al. Measuring hydrate/ice deposition in a flow loop from dissolved water in live liquid condensate[J]. AIChE Journal, 2009, 55(7): 1882-1888. |
34 | NICHOLAS Joseph W. Hydrate deposition in water saturated liquid condensate pipelines[D]. Golden: Colorado School of Mines, 2008. |
35 | NICHOLAS Joseph W, DIEKER Laura E, NUEBLING Lee, et al. Experimental investigation of deposition and wall growth in water saturated hydrocarbon pipelines in the absence of free water[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver: University of British Columbia Library, 2008. |
36 | ZHANG Dongxu, HUANG Qiyu, LI Rongbin, et al. Nucleation and growth of gas hydrates in emulsions of water in asphaltene-containing oils[J]. Energy & Fuels, 2021, 35(7): 5853-5866. |
37 | ZHANG Dongxu, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax crystals on nucleation during gas hydrate formation[J]. Energy & Fuels, 2019, 33(6): 5081-5090. |
38 | Xiaofang LYU, SHI Bohui, ZHOU Shidong, et al. Study on the growth rate of natural gas hydrate in water-in-oil emulsion system using a high-pressure flow loop[J]. RSC Advances, 2018, 8(64): 36484-36492. |
39 | VYSNIAUSKAS A, BISHNOI P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7): 1061-1072. |
40 | VYSNIAUSKAS A, BISHNOI P R. Kinetics of ethane hydrate formation[J]. Chemical Engineering Science, 1985, 40(2): 299-303. |
41 | 宋光春, 施政灼, 李玉星, 等. 油水体系内水合物的生成:温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(3): 1338-1345. |
SONG Guangchun, SHI Zhengzhuo, LI Yuxing, et al. Hydrate formation in oil-water systems: Investigations of the influences of temperature, pressure and rotation rate[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1338-1345. | |
42 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Experimental study of hydrate formation in oil-water systems using a high-pressure visual autoclave[J]. AIChE Journal, 2019, 65(9): 16667. |
43 | SHI Bohui, CHAI Shuai, DING Lin, et al. An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals[J]. AIChE Journal, 2018, 64(9): 3502-3518. |
44 | LIU Zaixing, SONG Yongchen, LIU Weiguo, et al. Formation of methane hydrate in oil-water emulsion governed by the hydrophilic and hydrophobic properties of non-ionic surfactants[J]. Energy & Fuels, 2019, 33(6): 5777-5784. |
45 | ZI Mucong, WU Guozhong, WANG Jiang, et al. Investigation of gas hydrate formation and inhibition in oil-water system containing model asphaltene[J]. Chemical Engineering Journal, 2021, 412: 128452. |
46 | ZI Mucong, CHEN Daoyi, WANG Jiang, et al. Kinetic and rheological study of methane hydrate formation in water-in-oil emulsion: effects of emulsion composition and silica sands[J]. Fuel, 2019, 255: 115708. |
47 | MOHAMMADI A H, JI H, BURGASS R W, et al. Gas hydrates in oil systems[C]//SPE Europec/EAGE Annual Conference and Exhibition. Vienna: SPE, 2006. |
48 | RAMAN Ashwin Kumar Yegya, AICHELE Clint P. Effect of particle hydrophobicity on hydrate formation in water-in-oil emulsions in the presence of wax[J]. Energy & Fuels, 2017, 31(5): 4817-4825. |
49 | YEGYA RAMAN Ashwin Kumar, KOTEESWARAN Samyukta, VENKATARAMANI Deepika, et al. A comparison of the rheological behavior of hydrate forming emulsions stabilized using either solid particles or a surfactant[J]. Fuel, 2016, 179: 141-149. |
50 | WANG Wei, HUANG Qiyu, ZHENG Haimin, et al. Effect of wax on hydrate formation in water-in-oil emulsions[J]. Journal of Dispersion Science and Technology, 2020, 41(12): 1821-1830. |
51 | ZHENG Haimin, HUANG Qiyu, WANG Wei, et al. Induction time of hydrate formation in water-in-oil emulsions[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8330-8339. |
52 | CHEN Yuchuan, SHI Bohui, LIU Yang, et al. Experimental and theoretical investigation of the interaction between hydrate formation and wax precipitation in water-in-oil emulsions[J]. Energy & Fuels, 2018, 32(9): 9081-9092. |
53 | 史博会, 雍宇, 柳杨, 等. 含蜡和防聚剂体系天然气水合物浆液生成及流动特性[J]. 化工进展, 2018, 37(6): 2182-2191. |
SHI Bohui, YONG Yu, LIU Yang, et al. Characteristics of natural gas hydrate slurry formation and flow in systems with wax and anti-agglomerates[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2182-2191. | |
54 | XUE Huiyong, ZHANG Jinjun, HAN Shanpeng, et al. Effect of asphaltenes on the structure and surface properties of wax crystals in waxy oils[J]. Energy & Fuels, 2019, 33(10): 9570-9584. |
55 | MCLEAN Joseph D, KILPATRICK Peter K. Effects of asphaltene aggregation in model heptane-toluene mixtures on stability of water-in-oil emulsions[J]. Journal of Colloid and Interface Science, 1997, 196(1): 23-34. |
56 | NING Yuanxing, LI Yuxing, SONG Guangchun, et al. Investigation on hydrate formation and growth characteristics in dissolved asphaltene-containing water-in-oil emulsion[J]. Langmuir, 2021, 37(37): 11072-11083. |
57 | CHENG Xianwen, HUANG Qiyu, ZHANG Dongxu, et al. Influence of asphaltene polarity on hydrate behaviors in water-in-oil emulsions[J]. Energy & Fuels, 2022, 36(1): 239-250. |
58 | ZHANG Dongxu, HUANG Qiyu, WANG Wei, et al. Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103799. |
59 | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems[J]. Fuel, 2015, 148: 186-190. |
60 | SONG Rencong, SHANG Liyan, LI Ping, et al. Application of hydrophobic particles in the formation kinetics of methane hydrate in water-in-oil emulsion[J]. Petroleum Science and Technology, 2020, 38(4): 391-397. |
61 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Hydrate formation in oil-water systems: Investigations of the influences of water cut and anti-agglomerant[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 369-377. |
62 | WANG Zhe, MA Guiyang, SHANG Liyan, et al. Effect of a nonionic surfactant on the formation of natural gas hydrate in a diesel emulsion system[J]. Petroleum Science and Technology, 2018, 36(23): 2017-2023. |
63 | ZEMENKOV Yu D, SHIRSHOVA A V, ARINSTEIN E A, et al. Influence of surfactants on gas-hydrate formation kinetics in water-oil emulsion[C]//IOP Conference Series: Materials Science and Engineering. Tyumen: IOP, 2018, 357: 012025. |
64 | YI Lizhi, ZHAO Lili, TAO Shunhui. Methane hydrate formation in an oil-water system in the presence of lauroylamide propylbetaine[J]. RSC Advances, 2020, 10(21): 12255-12261. |
65 | SHI Lingli, HE Yong, LU Jingsheng, et al. Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems[J]. Energy, 2020, 212: 118746. |
66 | DELROISSE Henry, Jean-Philippe TORRÉ, DICHARRY Christophe. Effects of a quaternary ammonium salt on the growth, wettability, and agglomeration of structure II hydrate crystals[J]. Energy & Fuels, 2018, 32(12): 12277-12288. |
67 | DELROISSE Henry, Jean-Philippe TORRÉ, DICHARRY Christophe. Effect of a hydrophilic cationic surfactant on cyclopentane hydrate crystal growth at the water/cyclopentane interface[J]. Crystal Growth & Design, 2017, 17(10): 5098-5107. |
68 | DONG Sanbao, LIU Chenwei, HAN Weiwei, et al. The effect of the hydrate antiagglomerant on hydrate crystallization at the oil-water interface[J]. ACS Omega, 2020, 5(7): 3315-3321. |
69 | NING Fulong, GUO Dongdong, DIN Shahab Ud, et al. The kinetic effects of hydrate anti-agglomerants/surfactants[J]. Fuel, 2022, 318: 123566. |
70 | Tai BUI, SICARD Francois, MONTEIRO Deepak, et al. Antiagglomerants affect gas hydrate growth[J]. The Journal of Physical Chemistry Letters, 2018, 9(12): 3491-3496. |
71 | 吕晓方, 胡善炜, 于达, 等. 基于在线颗粒分析仪的水合物生成特性实验研究[J]. 实验技术与管理, 2014, 31(11): 84-88. |
Xiaofang LYU, HU Shanwei, YU Da, et al. Experimental study of hydrate formation characteristics based on FBRM[J]. Experimental Technology and Management, 2014, 31(11): 84-88. | |
72 | LIU Yang, SHI Bohui, DING Lin, et al. Investigation of hydrate agglomeration and plugging mechanism in low-wax-content water-in-oil emulsion systems[J]. Energy & Fuels, 2018, 32(9): 8986-9000. |
73 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Experimental investigation on the microprocess of hydrate particle agglomeration using a high-speed camera[J]. Fuel, 2019, 237: 475-485. |
74 | COLOMBEL E, GATEAU P, BARRÉ L, et al. Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions[J]. Oil & Gas Science and Technology-Rev. IFP, 2009, 64(5): 629-636. |
75 | STONER Hannah M, Carolyn A KOH. Perspective on the role of particle size measurements in gas hydrate agglomeration predictions[J]. Fuel, 2021, 304: 121385. |
76 | DING Lin, SHI Bohui, LIU Yang, et al. Rheology of natural gas hydrate slurry: effect of hydrate agglomeration and deposition[J]. Fuel, 2019, 239: 126-137. |
77 | CAMARGO Ricardo, PALERMO Thierry. Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]//Yokohama: 4th International Conference on Gas Hydrates, 2002: 880-885. |
78 | PALERMO T, FIDEL-DUFOUR A, MAUREL P, et al. Model of hydrates agglomeration-application to hydrates formation in an acidic crude oil[C]//12th International Conference on Multiphase Production Technology. Barcelona: BHR Group, 2005. |
79 | PAUCHARD V, DARBOURET M, PALERMO T, et al. Gas hydrate slurry flow in a black oil. Prediction of gas hydrate particles agglomeration and linear pressure drop[C]//13th International Conference on Multiphase Production Technology. Edinburgh: BHR Group, 2007. |
80 | AMAN Zachary M, BROWN Erika P, SLOAN E Dendy, et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19796-19806. |
81 | ZERPA Luis E, SALAGER Jean Louis, Carolyn A KOH, et al. Surface chemistry and gas hydrates in flow assurance[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 188-197. |
82 | AMAN Zachary M, JOSHI Sanjeev E, SLOAN E Dendy, et al. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties[J]. Journal of Colloid and Interface Science, 2012, 376(1): 283-288. |
83 | HU Sijia, Carolyn A KOH. Interfacial properties and mechanisms dominating gas hydrate cohesion and adhesion in liquid and vapor hydrocarbon phases[J]. Langmuir, 2017, 33(42): 11299-11309. |
84 | BROWN Erika P, Carolyn A KOH. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 594-600. |
85 | WANG Wuchang, LI Yuxing, LIU Haihong, et al. Study of agglomeration characteristics of hydrate particles in oil/gas pipelines[J]. Advances in Mechanical Engineering, 2015, 7(2). |
86 | LIU Chenwei, LI Yuxing, WANG Weiyang, et al. Modeling the micromechanical interactions between clathrate hydrate particles and water droplets with reducing liquid volume[J]. Chemical Engineering Science, 2017, 163: 44-55. |
87 | TAYLOR Craig J. Adhesion force between hydrate particles and macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[D]. Golden: Colorado School of Mines, 2006. |
88 | LIU Chenwei, ZHANG Chongrui, ZHOU Chenru, et al. Effects of the solidification of capillary bridges on the interaction forces between hydrate particles[J]. Energy & Fuels, 2020, 34(4): 4525-4533. |
89 | AMAN Zachary M. Interfacial phenomena of cyclopentane hydrate[D]. Golden: Colorado School of Mines, 2012. |
90 | Johan SJÖBLOM, Bodhild ØVREVOLL, JENTOFT GunnHeidi, et al. Investigation of the hydrate plugging and non-plugging properties of oils[J]. Journal of Dispersion Science and Technology, 2010, 31(8): 1100-1119. |
91 | Annie FIDEL-DUFOUR, GRUY Frédéric, HERRI Jean Michel. Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing[J]. Chemical Engineering Science, 2006, 61(2): 505-515. |
92 | WANG Shenglong, FAN Shuanshi, LANG Xuemei, et al. Particle size dependence of clathrate hydrate particle cohesion in liquid/gaseous hydrocarbons[J]. Fuel, 2020, 259: 116201. |
93 | PALERMO T, ARLA D, BORREGALES M, et al. Study of the agglomeration between hydrate particles in oil using differential scanning calorimetry (DSC)[C]//5th International Conference on Gas Hydrates. Torndheim: Tapir Academic Press, 2005: 332-339. |
94 | LIU Chenwei, LI Mingzhong, LIU Chunting, et al. Micromechanical interactions between clathrate hydrate particles and water droplets: experiment and modeling[J]. Energy & Fuels, 2016, 30(8): 6240-6248. |
95 | LIU Chenwei, LI Mingzhong, ZHANG Guodong, et al. Direct measurements of the interactions between clathrate hydrate particles and water droplets[J]. Physical Chemistry Chemical Physics, 2015, 17(30): 20021-20029. |
96 | DAVIES Simon R, SLOAN E Dendy, Amadeu K SUM, et al. In situ studies of the mass transfer mechanism across a methane hydrate film using high-resolution confocal Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2010, 114(2): 1173-1180. |
97 | HU Sijia, Loan VO, MONTEIRO Deepak, et al. Structural effects of gas hydrate antiagglomerant molecules on interfacial interparticle force interactions[J]. Langmuir, 2021, 37(5): 1651-1661. |
98 | WANG Wuchang, WANG Xiaoyu, LI Yuxing, et al. Study on crystal growth and aggregated microstructure of natural gas hydrate under flow conditions[J]. Energy, 2020, 213: 118999. |
99 | DIEKER Laura E, AMAN Zachary M, GEORGE Nathan C, et al. Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications[J]. Energy & Fuels, 2009, 23(12): 5966-5971. |
100 | AMAN Zachary M, DIEKER Laura E, ASPENES Guro, et al. Influence of model oil with surfactants and amphiphilic polymers on cyclopentane hydrate adhesion forces[J]. Energy & Fuels, 2010, 24(10): 5441-5445. |
101 | NAULLAGE Pavithra M, BERTOLAZZO Andressa A, MOLINERO Valeria. How do surfactants control the agglomeration of clathrate hydrates?[J]. ACS Central Science, 2019, 5(3): 428-439. |
102 | LI Mingzhong, DONG Sanbao, LI Bofeng, et al. Effects of a naturally derived surfactant on hydrate anti-agglomeration using micromechanical force measurement[J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 140-147. |
103 | HU Sijia, Carolyn A KOH. CH4/C2H6 gas hydrate interparticle interactions in the presence of anti-agglomerants and salinity[J]. Fuel, 2020, 269: 117208. |
104 | BROWN Erika P, TURNER Doug, GRASSO Giovanni, et al. Effect of wax/anti-agglomerant interactions on hydrate depositing systems[J]. Fuel, 2020, 264: 116573. |
105 | WANG Wei, HUANG Qiyu, HU Sijia, et al. Influence of wax on cyclopentane clathrate hydrate cohesive forces and interfacial properties[J]. Energy & Fuels, 2020, 34(2): 1482-1491. |
106 | ASPENES G, DIEKER L E, AMAN Z M, et al. Adhesion force between cyclopentane hydrates and solid surface materials[J]. Journal of Colloid and Interface Science, 2010, 343(2): 529-536. |
107 | AMAN Zachary M, LEITH William J, GRASSO Giovanny A, et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir, 2013, 29(50): 15551-15557. |
108 | LIU Chenwei, WANG Zhiyuan, TIAN Jinlin, et al. Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials[J]. Chemical Engineering Science, 2020, 217: 115524. |
109 | AMAN Zachary M, ZERPA Luis E, Carolyn A KOH, et al. Development of a tool to assess hydrate-plug-formation risk in oil-dominant pipelines[J]. SPE Journal, 2015, 20(4): 884-892. |
110 | DING Lin, SHI Bohui, LV Xiaofang, et al. Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop[J]. Chemical Engineering Science, 2016, 146: 199-206. |
111 | PEYSSON Yannick, NULAND Sven, MAUREL Philippe, et al. Flow of hydrates dispersed in production lines[C]//SPE Annual Technical Conference and Exhibition. Denver: SPE, 2003. |
112 | HERNANDEZ O C. Investigation of hydrate slurry flow in horizontal pipelines[D]. Tulsa: University of Tulsa, 2006. |
113 | 吕晓方, 王莹, 李文庆, 等. 天然气油基水合物浆液流动实验[J]. 天然气工业, 2014, 34(11): 108-114. |
Xiaofang LYU, WANG Ying, LI Wenqing, et al. An experimental study of the hydrate blockage in the oil-dominated flow system[J]. Natural Gas Industry, 2014, 34(11): 108-114. | |
114 | 吕晓方. 高压多相体系水合物浆液生成/分解及流动规律研究[D]. 北京: 中国石油大学(北京), 2015. |
Xiaofang LYU. Study on the hydrate slurry formation/decomposition and multiphase flow in high-pressure multiphase system[D]. Beijing: China University of Petroleum (Beijing), 2015. | |
115 | GRASSO G A, SLOAN E Dendy, KOH C A, et al. Hydrate deposition mechanisms on pipe walls[C]. Houston: Offshore Technology Conference, 2014. |
116 | DING Lin, SHI Bohui, WANG Jiaqi, et al. Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems[J]. Energy & Fuels, 2017, 31(9): 8865-8876. |
117 | AMAN Zachary M, LORENZO Mauricio Di, KOZIELSKI Karen, et al. Hydrate formation and deposition in a gas-dominant flowloop: initial studies of the effect of velocity and subcooling[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1490-1498. |
118 | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Investigation on the mechanical properties and mechanical stabilities of pipewall hydrate deposition by modelling and numerical simulation[J]. Chemical Engineering Science, 2018, 192: 477-487. |
119 | SHI Bohui, DING Lin, LIU Yang, et al. Hydrate slurry flow property in W/O emulsion systems[J]. RSC Advances, 2018, 8(21): 11436-11445. |
120 | 王武昌, 陈鹏, 李玉星, 等. 天然气水合物浆在管道中的流动沉积特性[J]. 天然气工业, 2014, 34(2): 99-104. |
WANG Wuchang, CHEN Peng, LI Yuxing, et al. Flow and deposition characteristics of natural gas hydrate in pipelines[J]. Natural Gas Industry, 2014, 34(2): 99-104. | |
121 | LIU Zheyuan, CHEN Bingbing, LANG Chen, et al. An improved model for predicting the critical velocity in the removal of hydrate particles from solid surfaces[J]. Chemical Physics Letters, 2021, 779: 138832. |
122 | BELLUCCI Michael A, WALSH Matthew R, TROUT Bernhardt L. Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates[J]. The Journal of Physical Chemistry C, 2018, 122(5): 2673-2683. |
123 | XU Jiafang, DU Shuai, HAO Yongchao, et al. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations[J]. Chemical Physics, 2021, 551: 111323. |
124 | YAGASAKI Takuma, MATSUMOTO Masakazu, TANAKA Hideki. Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates[J]. Journal of the American Chemical Society, 2015, 137(37): 12079-12085. |
125 | XU Ping, LANG Xuemei, FAN Shuanshi, et al. Molecular dynamics simulation of methane hydrate growth in the presence of the natural product pectin[J]. The Journal of Physical Chemistry C, 2016, 120(10): 5392-5397. |
126 | Florianne CASTILLO-BORJA, BRAVO-SÁNCHEZ Ulises I. Molecular Dynamics simulation study of the performance of different inhibitors for methane hydrate growth[J]. Journal of Molecular Liquids, 2021, 337: 116510. |
127 | MEHRABIAN Hadi, BELLUCCI Michael A, WALSH Matthew R, et al. Effect of salt on antiagglomerant surface adsorption in natural gas hydrates[J]. The Journal of Physical Chemistry C, 2018, 122(24): 12839-12849. |
128 | CHAPOY Antonin, MAZLOUM Saeid, BURGASS Rod, et al. Clathrate hydrate equilibria in mixed monoethylene glycol and electrolyte aqueous solutions[J]. The Journal of Chemical Thermodynamics, 2012, 48: 7-12. |
129 | KIM Hyunho, YOO Wonwo, Youngsub LIM, et al. Economic evaluation of MEG injection and regeneration process for oil FPSO[J]. Journal of Petroleum Science and Engineering, 2018, 164: 417-426. |
130 | DUAN Zhenhao, SUN Rui. A model to predict phase equilibrium of CH4 and CO2 clathrate hydrate in aqueous electrolyte solutions[J]. American Mineralogist, 2006, 91(8/9): 1346-1354. |
131 | HU Yue, LEE Bo Ram, Amadeu K SUM. Phase equilibrium data of methane hydrates in mixed brine solutions[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 750-755. |
132 | QASIM Ali, KHAN Muhammad Saad, Bhajan LAL, et al. Quaternary ammonium salts as thermodynamic hydrate inhibitors in the presence and absence of monoethylene glycol for methane hydrates[J]. Fuel, 2020, 259: 116219. |
133 | JIN Yusuke, KIDA Masato, KONNO Yoshihiro, et al. Clathrate hydrate equilibrium in methane-water systems with the addition of monosaccharide and sugar alcohol[J]. Journal of Chemical & Engineering Data, 2017, 62(1): 440-444. |
134 | BAVOH Cornelius B, PARTOON Behzad, Bhajan LAL, et al. Inhibition effect of amino acids on carbon dioxide hydrate[J]. Chemical Engineering Science, 2017, 171: 331-339. |
135 | BAVOH Cornelius B, PARTOON Behzad, Bhajan LAL, et al. Methane hydrate-liquid-vapour-equilibrium phase condition measurements in the presence of natural amino acids[J]. Journal of Natural Gas Science and Engineering, 2017, 37: 425-434. |
136 | YASUDA Keita, TAKEYA Satoshi, SAKASHITA Mami, et al. Binary ethanol-methane clathrate hydrate formation in the system CH4-C2H5OH-H2O: Confirmation of structure II hydrate formation[J]. The Journal of Physical Chemistry C, 2009, 113(28): 12598-12601. |
137 | KELLAND Malcolm A. History of the development of low dosage hydrate inhibitors[J]. Energy & Fuels, 2006, 20(3): 825-847. |
138 | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Experimental validation of kinetic inhibitor strength on natural gas hydrate nucleation[J]. Fuel, 2015, 139: 554-560. |
139 | KELLAND Malcolm A. Designing kinetic hydrate inhibitors—Eight projects with only partial success, but some lessons learnt[J]. Energy & Fuels, 2017, 31(5): 5046-5054. |
140 | Eduardo LUNA-ORTIZ, HEALEY Matt, ANDERSON Ross, et al. Crystal growth inhibition studies for the qualification of a kinetic hydrate inhibitor under flowing and shut-in conditions[J]. Energy & Fuels, 2014, 28(5): 2902-2913. |
141 | CHENG Liwei, LIAO Kai, LI Zhi, et al. The invalidation mechanism of kinetic hydrate inhibitors under high subcooling conditions[J]. Chemical Engineering Science, 2019, 207: 305-316. |
142 | TARIQ Mohammad, ROONEY David, OTHMAN Enas, et al. Gas hydrate inhibition: a review of the role of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17855-17868. |
143 | SHI Bohui, SONG Shangfei, CHEN Yuchuan, et al. Status of natural gas hydrate flow assurance research in China: a review[J]. Energy & Fuels, 2021, 35(5): 3611-3658. |
144 | Tai BUI, PHAN Anh, MONTEIRO Deepak, et al. Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management[J]. Langmuir, 2017, 33(9): 2263-2274. |
145 | Felipe JIMÉNEZ-ÁNGELES, FIROOZABADI Abbas. Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates[J]. ACS Central Science, 2018, 4(7): 820-831. |
146 | FANG Bin, NING Fulong, HU Sijia, et al. The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study[J]. RSC Advances, 2020, 10(52): 31027-31038. |
147 | HUO Z, FREER E, LAMAR M, et al. Hydrate plug prevention by anti-agglomeration[J]. Chemical Engineering Science, 2001, 56(17): 4979-4991. |
148 | KULIEV A, RASULOV A, DASHDAMIROV F. Surfactants studies as hydrate-formation inhibitors[J]. Gazovoe Delo, 1972, 10: 17-19. |
149 | GRAINGER N, FEASEY N D, FEASEY N. Composition used as anti-agglomeration hydrate inhibitor for inhibiting formation of gas hydrate agglomeration in liquid during oil and gas exploration, recovery, or processing, comprises quaternary ammonium compound: WO2015015211-A1; GB2516862-A; CA2912507-A1; AU2014298215-A1; US2016186033-A1; AU2014298215-B2; BR112015029589-A2; CA2912507-C[P]. 2015. |
150 | ZANOTA Marie L, DICHARRY Christophe, GRACIAA Alain. Hydrate plug prevention by quaternary ammonium salts[J]. Energy & Fuels, 2005, 19(2): 584-590. |
151 | MUIJS H M, HEERS N C, VANOS N M, et al. Inhibition of hydrate formation in wet hydrocarbon streams: CA2036084-A; NO 9100619-A; EP457375-A; NZ237020-A; EP457375-B1; DE69100197-E; NO180783-B[P]. 1991. |
152 | FROSTMAN L M. Anti-agglomerant hydrate inhibitors for prevention of hydrate plugs in deepwater systems[C]//SPE Annual Technical Conference and Exhibition. Dallas: SPE, 2000. |
153 | FROSTMAN L M, THIEU V, CROSBY D L, et al. Low-dosage hydrate inhibitors (LDHIs): reducing costs in existing systems and designing for the future[C]//International symposium on oilfield chemistry. Houston: SPE, 2003. |
[1] | 王唯, 张东旭, 李遵照, 王晓霖, 黄启玉. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
[2] | 付玮琪, 赵子贤, 于璟, 魏伟, 王志远, 黄炳香. 泡状流中水合物生成预测模型及实验[J]. 化工进展, 2022, 41(11): 5746-5754. |
[3] | 黄婷, 李长俊, 丁麟, 李清平. 气水体系甲烷水合物生成和分解动力学[J]. 化工进展, 2020, 39(8): 2954-2961. |
[4] | 宋光春,施政灼,李玉星,王武昌,赵鹏飞,姜凯,姚淑鹏. 油水体系内水合物的生成:温度、压力和搅拌速率影响[J]. 化工进展, 2019, 38(03): 1338-1345. |
[5] | 廖启江,秦宏云,周鸣亮,张敏卿,张金利. 高剪切混合器研究与应用进展[J]. 化工进展, 2019, 38(03): 1160-1175. |
[6] | 张忠良, 刘永启, 郑斌, 李瑞阳, 郁鸿凌. 水冷螺旋输送机内颗粒的流动特性[J]. 化工进展, 2017, 36(09): 3217-3222. |
[7] | 唐绍猛, 刘德俊, 文江波. 高黏油水两相流研究进展[J]. 化工进展, 2017, 36(08): 2742-2747. |
[8] | 刘洪鹏1,2,肖剑波2,李惟毅3,陈冠益1,王 擎2. 65 t/h高低差速循环流化床流动特性模拟[J]. 化工进展, 2013, 32(02): 290-294. |
[9] | 吉 辉,卢啸风,李文杰,亢银虎. 小型循环流化床锅炉返料换热装置的运行特性试验 [J]. 化工进展, 2011, 30(5): 962-. |
[10] | 王武昌1,李玉星1,樊栓狮2,梁德青3. 四氢呋喃水合物浆流动特性 [J]. 化工进展, 2010, 29(8): 1418-. |
[11] | 余亚兰,周明宇,谢 锐,巨晓洁,褚良银. 微通道内表面性质对其内流体流动特性的影响 [J]. 化工进展, 2010, 29(1): 29-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |