化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 507-515.DOI: 10.16085/j.issn.1000-6613.2022-0356
收稿日期:
2022-03-09
修回日期:
2022-06-27
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
高宁博
作者简介:
高宁博(1978—),男,教授,研究方向为固体废物处理及资源化。E-mail:nbogao@xjtu.edu.cn。
GAO Ningbo(), HU Yadi, QUAN Cui
Received:
2022-03-09
Revised:
2022-06-27
Online:
2022-10-20
Published:
2022-11-10
Contact:
GAO Ningbo
摘要:
随着城市发展和人们对美食的追求,餐厨垃圾的年产量逐年增长,其资源化利用受到人们越来越多的关注。餐厨垃圾产量大、组分复杂,具有“资源性”和“危害性”的双重属性。本文梳理了餐厨垃圾的产量特性,阐述了近年来餐厨垃圾的热化学处理技术和生物处理技术的研究现状及进展,分析了热化学处理过程中的反应参数和催化剂种类对餐厨垃圾热解性能和热解产物分布的影响,总结了生物处理过程中餐厨垃圾的优势,为今后餐厨垃圾的热化学转化和生物处理的研究提供方向。
中图分类号:
高宁博, 胡雅迪, 全翠. 餐厨垃圾的热转化和生物处理研究进展[J]. 化工进展, 2022, 41(S1): 507-515.
GAO Ningbo, HU Yadi, QUAN Cui. Research progress on thermochemical transformation and biological treatment of food waste[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 507-515.
组分 | 质量分数/% | 主要成分 | 比例/% | 元素 | 质量分数/% |
---|---|---|---|---|---|
水分 | 73~95 | 残留食物 | 75~90 | C | 42.05~47.67 |
盐分 | 0.5~3 | 纸张 | 0.5~0.9 | N | 1.91~3.89 |
粗蛋白 | 13~27 | 油脂 | 2.0~17.0 | O | 30.22~34.87 |
粗脂肪 | 17~42 | 骨头 | 5.0 | H | 5.25~5.94 |
纤维素 | 2.6~6.5 | 木头 | 1.0 | S | <0.55 |
织物 | 0.1 | Cl | 0.21 | ||
塑料 | 0.7 | C/N | 10~30 | ||
金属 | 0.1 | Ca | >0.0048 |
表1 餐厨垃圾组成成分及理化性质[10-14]
组分 | 质量分数/% | 主要成分 | 比例/% | 元素 | 质量分数/% |
---|---|---|---|---|---|
水分 | 73~95 | 残留食物 | 75~90 | C | 42.05~47.67 |
盐分 | 0.5~3 | 纸张 | 0.5~0.9 | N | 1.91~3.89 |
粗蛋白 | 13~27 | 油脂 | 2.0~17.0 | O | 30.22~34.87 |
粗脂肪 | 17~42 | 骨头 | 5.0 | H | 5.25~5.94 |
纤维素 | 2.6~6.5 | 木头 | 1.0 | S | <0.55 |
织物 | 0.1 | Cl | 0.21 | ||
塑料 | 0.7 | C/N | 10~30 | ||
金属 | 0.1 | Ca | >0.0048 |
餐厨垃圾处理技术 | 优点 | 缺点 |
---|---|---|
焚烧 | 工艺简单,易操作;产生热能,实现资源二次利用 | 投资大,成本高;易产生粉尘、有毒有害气体等;安全性低 |
热解 | 产品范围广,效率高,对环境友好,耗时短 | 处理量小,原料预处理要求高 |
填埋 | 处理成本低,易管理;生成沼气可以再利用 | 造成土地资源浪费;易产生恶臭气体 |
机械破碎 | 易操作,投入资金小 | 加重城市污水处理负荷;易造成管网堵塞 |
饲料化 | 工艺简单,易操作;占地面积小,投资小,易管理 | 产生的安全隐患较大,威胁人体健康 |
堆肥 | 工艺技术简单 | 易产生气味,影响大气环境;加剧土壤盐碱化 |
好氧生物 | 处理时间短,效率高,自动化程度高 | 投入成本较高 |
厌氧消化 | 自动化程度高,技术成熟,经济效益高 | 成本高,工艺复杂,投资回收周期长 |
表2 餐厨垃圾处理技术的优缺点
餐厨垃圾处理技术 | 优点 | 缺点 |
---|---|---|
焚烧 | 工艺简单,易操作;产生热能,实现资源二次利用 | 投资大,成本高;易产生粉尘、有毒有害气体等;安全性低 |
热解 | 产品范围广,效率高,对环境友好,耗时短 | 处理量小,原料预处理要求高 |
填埋 | 处理成本低,易管理;生成沼气可以再利用 | 造成土地资源浪费;易产生恶臭气体 |
机械破碎 | 易操作,投入资金小 | 加重城市污水处理负荷;易造成管网堵塞 |
饲料化 | 工艺简单,易操作;占地面积小,投资小,易管理 | 产生的安全隐患较大,威胁人体健康 |
堆肥 | 工艺技术简单 | 易产生气味,影响大气环境;加剧土壤盐碱化 |
好氧生物 | 处理时间短,效率高,自动化程度高 | 投入成本较高 |
厌氧消化 | 自动化程度高,技术成熟,经济效益高 | 成本高,工艺复杂,投资回收周期长 |
原料 | 热解条件 | 生物炭产量/% | 反应器类型 |
---|---|---|---|
橘皮[ | 400℃(30°C/min);2h | 33.6 | 间歇式反应器 |
餐厨垃圾[ | 260℃(4°C/min);1h | 38.5 | 固定床反应器 |
餐厨垃圾[ | 500℃(20°C /min);2h | 22.9 | 管式立式反应器 |
土豆皮[ | 480℃(20°C/min);8s | 30.5 | 间歇式反应器 |
餐厨垃圾[ | 400℃(10°C/min);2h | 44.26 | 管式立式反应器 |
表3 餐厨垃圾热解产生生物炭的典型研究
原料 | 热解条件 | 生物炭产量/% | 反应器类型 |
---|---|---|---|
橘皮[ | 400℃(30°C/min);2h | 33.6 | 间歇式反应器 |
餐厨垃圾[ | 260℃(4°C/min);1h | 38.5 | 固定床反应器 |
餐厨垃圾[ | 500℃(20°C /min);2h | 22.9 | 管式立式反应器 |
土豆皮[ | 480℃(20°C/min);8s | 30.5 | 间歇式反应器 |
餐厨垃圾[ | 400℃(10°C/min);2h | 44.26 | 管式立式反应器 |
原料 | 催化剂 | 热解工况 | 产物产量 | 产物产量(有催化剂) |
---|---|---|---|---|
废食用油+茶渣[ | HZSM-5沸石 | 550℃,N2气氛下,掺混比例 1∶1热解 | 芳香烃质量分数6.3%;烯烃质量分数3.4% | 芳香烃质量分数28.5%;烯烃质量分数8.7% |
餐厨垃圾[ | 活性炭为载体的铂催化剂 | 700℃,N2气氛下,掺混比例 1∶1热解 | 苯衍生物浓度702.6mg/L | 苯衍生物浓度降低到149.7mg/L |
咖啡渣[ | 废聚苯乙烯泡沫 | 500℃,N2气氛下热解 | 热解油热值为25.91MJ/kg | 共热解有热值提高到39.66MJ/kg,提高了碳氢化合物和芳香族化合物的产量 |
表4 餐厨垃圾催化热解产物产量对比
原料 | 催化剂 | 热解工况 | 产物产量 | 产物产量(有催化剂) |
---|---|---|---|---|
废食用油+茶渣[ | HZSM-5沸石 | 550℃,N2气氛下,掺混比例 1∶1热解 | 芳香烃质量分数6.3%;烯烃质量分数3.4% | 芳香烃质量分数28.5%;烯烃质量分数8.7% |
餐厨垃圾[ | 活性炭为载体的铂催化剂 | 700℃,N2气氛下,掺混比例 1∶1热解 | 苯衍生物浓度702.6mg/L | 苯衍生物浓度降低到149.7mg/L |
咖啡渣[ | 废聚苯乙烯泡沫 | 500℃,N2气氛下热解 | 热解油热值为25.91MJ/kg | 共热解有热值提高到39.66MJ/kg,提高了碳氢化合物和芳香族化合物的产量 |
厌氧消化系统 | 优点 | 缺点 |
---|---|---|
单级厌氧系统 | 设计简单,易于施工和操作 | 餐厨垃圾快速酸化不利于产甲烷菌生存,系统pH降低 |
两级或多级厌氧系统 | 甲烷产量高、工艺稳定性增强、病原菌管理、挥发性固体去除效率提高 | 维护和运营成本高 |
表5 餐厨垃圾厌氧消化系统种类及优缺点
厌氧消化系统 | 优点 | 缺点 |
---|---|---|
单级厌氧系统 | 设计简单,易于施工和操作 | 餐厨垃圾快速酸化不利于产甲烷菌生存,系统pH降低 |
两级或多级厌氧系统 | 甲烷产量高、工艺稳定性增强、病原菌管理、挥发性固体去除效率提高 | 维护和运营成本高 |
1 | GUSTAVSSON J, CEDERBERG C, SONESSON U, et al. Global food losses and food waste: extent, causes and prevention[M]. Food and Agriculture Organization of the United Nations, 2011. |
2 | BRAEUTIGAM K R, JOERISSEN J, PRIEFER C, et al. The extent of food waste generation across EU-27: Different calculation methods and the reliability of their results[J]. Waste Management & Research. 2014, 32 (8): 683-694. |
3 | 中华人民共和国住房和城乡建设部. 餐厨垃圾处理技术规范 [S]. 2012. |
4 | LABORDE D, MARTIN W, SWINNEN J, et al. COVID-19 risks to global food security[J]. Science, 2020, 369 (6503): 500-502. |
5 | THYBERG K L, TONJES D J, Drivers of food waste and their implications for sustainable policy development[J]. Resources, Conservation and Recycling. 2016, 106: 110-123. |
6 | 中华人民共和国生态环境部. 2020年全国大、中城市固体废物污染环境防治年报[R]. 2020, https://www.mee.gov.cn/ywgz/gtfwyhxpgl/gtfw/202012/P020201228557295103367.pdf. |
7 | 中华人民共和国生态环境部. 2017年全国大、中城市固体废物污染环境防治年报[J]. 2017, . |
8 | 周俊, 王梦瑶, 王改红, 等. 餐厨垃圾资源化利用技术研究现状及展望[J]. 生物资源, 2020, 42(1): 87-96. |
ZHOU Jun, WANG Mengyao, WANG Gaihong, et al. Research status and prospect of food waste utilization technology[J]. Biotic Resources, 2020, 42(1): 87-96. | |
9 | MEHARIYA S, PATEL A K, OBULISAMY P K, et al. Co-digestion of food waste and sewage sludge for methane production: Current status and perspective[J]. Bioresource Technology. 2018, 265: 519-531. |
10 | LIU Gang. Food losses and food waste in China: a first estimate[J]. OECD Food, Agriculture and Fisheries Papers, 2014. |
11 | HUIRU Z, YUNJUN Y, LIBERTI F, et al. Technical and economic feasibility analysis of an anaerobic digestion plant fed with canteen food waste[J]. Energy Conversion and Management, 2019, 180: 938-948. |
12 | 胡鑫鑫. 杭州市餐厨垃圾预处理技术的应用[J]. 环境卫生工程, 2018, 26 (3): 8-10. |
HU Xinxin. Application on pretreatment technology of food waste in Hangzhou[J]. Environmental Sanitation Engineering, 2018, 26(3): 8-10. | |
13 | ZHOU Y, ENGLER N, NELLES M. Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China[J]. Bioresource Technology, 2018, 260: 404-412. |
14 | LI Y, JIN Y, LI J, et al. Current situation and development of kitchen waste treatment in China[J]. Procedia Environmental Sciences, 2016, 31: 40-49. |
15 | 王凯军, 王婧瑶, 左剑恶, 等. 我国餐厨垃圾厌氧处理技术现状分析及建议[J]. 环境工程学报, 2020, 14(7): 1735-1742. |
WANG Kaijun, WANG Jingyao, ZUO Jian′ e, et al. Analysis and suggestion of current food waste anaerobic digestion technology in China[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1735-1742 | |
16 | HU ZhiFeng, GUO Pingsheng, JIANG Yuhui, et al. The catalytic pyrolysis of food waste by microwave heating[J]. Bioresource Technology, 2014, 166: 45-50. |
17 | MA Y, LIU Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach[J]. Biotechnology Advances, 2019, 37(7): 107414. |
18 | 罗思义. 城市生活垃圾破碎机的研制及粒径对垃圾热解气化特性的影响研究[D].武汉: 华中科技大学, 2010. |
LUO Siyi. Research on municipal solid waste shredder and effect of particle size on pyrolysis&gasification performance[D]: Wuhan: Huazhong University of Science and Technology, 2010. | |
19 | KIM S, TSANG Y F, KWON E E, et al. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks[J]. Korean Journal of Chemical Engineering. 2019, 36 (1): 1-11. |
20 | KHOO H H, LIM T Z, TAN R. Food waste conversion options in Singapore: Environmental impacts based on an LCA perspective[J].Science of the Total Environment, 2010, 408 (6): 1367-1373. |
21 | ELKHALIFA S, AL-ANSARI T, MACKEY H R, et al. Food waste to biochars through pyrolysis: A review[J]. Resources, Conservation and Recycling. 2019, 144: 310-320. |
22 | MOFIJUR M, FATTAH I M, KUMAR P S, et al. Bioenergy recovery potential through the treatment of the meat processing industry waste in Australia[J]. Journal of Environmental Chemical Engineering, 2021, 9 (4): 105657. |
23 | KWON E E, KIM S, LEE J. Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment[J]. Journal of CO2 Utilization, 2019, 31: 173-180. |
24 | KIM S, LEE Y, LIN K Y, et al. The valorization of food waste via pyrolysis[J]. Journal of Cleaner Production, 2020, 259: 120816. |
25 | NYAMBURA S M, JUFEI W, HUA L, et al. Microwave co-pyrolysis of kitchen food waste and rice straw for waste reduction and sustainable biohydrogen production: Thermo-kinetic analysis and evolved gas analysis[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102072. |
26 | LI T, REMÓN J, JIANG Z, et al. Towards the development of a novel “bamboo-refinery” concept: Selective bamboo fractionation by means of a microwave-assisted, acid-catalysed, organosolv process[J]. Energy Conversion and Management, 2018, 155: 147-160. |
27 | SAQIB N U, BAROUTIAN S, SARMAH A K. Physicochemical, structural and combustion characterization of food waste hydrochar obtained by hydrothermal carbonization[J]. Bioresource Technology, 2018, 266: 357-363. |
28 | XU F, MING X, JIA R, et al. Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen[J]. Fuel Processing Technology, 2020, 210: 106558. |
29 | MKHIZE N M, DANON B, ALVAREZ J, et al. Influence of reactor and condensation system design on tyre pyrolysis products yields[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104683. |
30 | LEE Y, LIN K Y, KWON E E, et al. Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste[J]. Journal of Cleaner Production, 2019, 227: 624-633. |
31 | STATE R N, IONESCU G, PĂTRAȘCU M, et al. Twin reactor catalytic assisted pyrolysis for food court waste conversion into high end chemicals[J]. Journal of Analytical and Applied Pyrolysis, 2021, 160: 105351. |
32 | KRAIEM T, HASSEN-TRABELSI A B, NAOUI S, et al. Characterization of the liquid products obtained from Tunisian waste fish fats using the pyrolysis process[J]. Fuel Processing Technology, 2015, 138: 404-412. |
33 | TRABELSI A B, ZAAFOURI K, BAGHDADI W, et al. Second generation biofuels production from waste cooking oil via pyrolysis process[J]. Renewable Energy, 2018, 126: 888-896. |
34 | LEE Y, KIM S, KWON E E, et al. Effect of carbon dioxide on thermal treatment of food waste as a sustainable disposal method[J]. Journal of CO2 Utilization, 2020, 36: 76-81. |
35 | PRIECEL P, LOPEZ-SANCHEZ J A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (1): 3-21. |
36 | TRAN H N, YOU S J, CHAO H P. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar[J]. Waste Management & Research, 2016;34(2):129-138. |
37 | LEE Y E, SHIN D C, JEONG Y, et al. Effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants[J]. Energies, 2019, 12(23). |
38 | PATRA B R, NANDA S, DALAI A K, et al. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products[J]. Chemosphere, 2021, 285: 131431. |
39 | OH J I, LEE J, LEE T, et al. Strategic CO2 utilization for shifting carbon distribution from pyrolytic oil to syngas in pyrolysis of food waste[J]. Journal of CO2 Utilization, 2017, 20: 150-155. |
40 | 杨文申, 林均衡, 阴秀丽, 等. 垃圾衍生燃料热解半焦气化过程中HCl与H2S析出规律[J].燃料化学学报,2019,47(01):121-128. |
YANG Wenshen, LIN Junheng, YIN Xiuli, et al. Release of HCl and H2S during gasification of refuse derived-fuel chars[J]. Journal of Fuel Chemistry and Technology, 2019, 47(1): 121-128. | |
41 | PARK C, LEE N, KIM J, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions[J]. Environmental Pollution, 2021, 270: 116045. |
42 | CHEN J, MA X, YU Z, et al. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS[J]. Bioresource Technology, 2019, 289: 121585. |
43 | KIM S, LEE C G, KIM Y T, et al. Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis[J]. Chemosphere, 2020, 248: 126043. |
44 | MONG G R, CHONG C T, NG J H, et al. Microwave pyrolysis for valorisation of horse manure biowaste[J]. Energy Conversion and Management, 2020, 220: 113074 |
45 | VU L H, LEE B, WOOK S J, et al. Catalytic pyrolysis of spent coffee waste for upgrading sustainable bio-oil in a bubbling fluidized-bed reactor: Experimental and techno-economic analysis[J]. Chemical Engineering Journal, 2022, 427: 130956. |
46 | LUO L, KAUR G, WONG J W. A mini-review on the metabolic pathways of food waste two-phase anaerobic digestion system[J]. Waste Manag. Res., 2019, 37 (4): 333-346. |
47 | LIN X, ZHANG Z, ZHANG Z, et al. Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts[J]. Waste Management, 2018, 79: 38-47. |
48 | BILLER P, ROSS A B. Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content[J]. Bioresource Technology, 2011, 102 (1): 215-225. |
49 | ZHANG L, XU C, CHAMPAGNE P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51 (5): 969-982. |
50 | SINGH D, GONZALES-CALIENES G. Liquid biofuels from algae[M]. Singapore: Springer Singapore, 2021. |
51 | AHMED E S, ROBERTSON G, JIANG X, et al. Catalytic hydrothermal liquefaction of food waste: Influence of catalysts on bio-crude yield, asphaltenes, and pentane soluble fractions[J]. Fuel, 2022, 324: 124452. |
52 | ROBERTSON G, ADININGTYAS K V, EBRAHIM S A, et al. Understanding the nature of bio-asphaltenes produced during hydrothermal liquefaction[J]. Renewable Energy, 2021, 173: 128-140. |
53 | WAINAINA S, LUKITAWESA, KUMAR AWASTHI M, et al. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review[J]. Bioengineered, 2019, 10 (1): 437-458. |
54 | KURADE M B, SAHA S, KIM J R, et al. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease[J]. Bioresource Technology, 2020, 296: 122294. |
55 | ZHANG D, WEI Y, WU S, et al. Rapid initiation of methanogenesis in the anaerobic digestion of food waste by acclimatizing sludge with sulfidated nanoscale zerovalent iron[J]. Bioresource Technology, 2021, 341: 125805. |
56 | CHENG L, GAO N, QUAN C, et al. Promoting the production of methane on the co-digestion of food waste and sewage sludge by aerobic pre-treatment[J]. Fuel, 2021, 292: 120197. |
57 | HELENAS P J, BIESDORF B P, TORRECILHAS A R, et al. Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste[J]. Journal of Cleaner Production, 2020, 272: 123130. |
58 | MA Y, YIN Y, LIU Y. New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer[J]. Bioresource Technology, 2017, 241: 448-453. |
59 | RAMDANI N, HAMOU A, LOUSDAD A, et al. Physicochemical characterization of sewage sludge and green waste for agricultural utilization[J]. Environmental Technology, 2015, 36 (12): 1594-1604. |
60 | KAWAI M, NAGAO N, TAJIMA N, et al. The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield[J]. Bioresource Technology, 2014, 157: 174-180. |
61 | WANG X, PAN S, ZHANG Z, et al. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community[J]. Bioresource Technology, 2017, 224: 397-404. |
62 | 曹秀芹, 刘超磊, 朱开金, 等. 微生物菌剂强化餐厨垃圾和污泥联合堆肥[J]. 环境工程学报, 2022, 16 (2): 576-583. |
CAO Xiuqin, LIU Chaolei, ZHU Kaijin, et al. Co-composting of food waste and sludge enhanced by microbial agents[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 576-583. | |
63 | YANG F, LI Y, HAN Y, et al. Performance of mature compost to control gaseous emissions in kitchen waste composting[J]. Science of The Total Environment, 2019, 657: 262-269. |
64 | CHEN Z, LI Y, PENG Y, et al. Feasibility of sewage sludge and food waste aerobic co-composting: Physicochemical properties, microbial community structures, and contradiction between microbial metabolic activity and safety risks[J]. Science of The Total Environment, 2022, 825: 154047. |
65 | ANAND C K, APUL D S. Composting toilets as a sustainable alternative to urban sanitation—A review[J]. Waste Management, 2014, 34 (2): 329-343. |
66 | 黄林丽, 谢斌, 陈立, 等. 公共餐厨垃圾饲料化利用的混合菌发酵工艺[J]. 食品与发酵工业, 2019, 45(24): 5. |
HUANG Linli, XIE Bin, CHEN Li, et al. Mixed fermentation of public kitchen waste to animal feed[J] Food and Fermentation Industries, 2019, 45(24): 5. | |
67 | 蔡静, 张紊玮, 贠建民, 等. 餐厨垃圾微生物发酵生产蛋白饲料的工艺优化[J]. 中国酿造, 2015, 34(2): 114-119. |
CAI Jing, ZHANG Wenwei, YUN Jianmin, et al. Optimization of microbial fermentation process to produce protein feed from kitchen waste[J]. China Brewing, 2015, 34(2): 114-119. |
[1] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[2] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[3] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[4] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[5] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[6] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[7] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[8] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[9] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[10] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[11] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[12] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[13] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[14] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[15] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |