1 |
LUO Y, XIONG S Y, HUANG J T, et al. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111300.
|
2 |
CHAICHAN M T, KAZEM H A, AL-WAELI A H A, et al. Controlling the melting and solidification points temperature of PCMs on the performance and economic return of the water-cooled photovoltaic thermal system[J]. Solar Energy, 2021, 224: 1344-1357.
|
3 |
王慧, 马秀琴, 陈月, 等. 新型太阳能复合相变蓄能炕的性能研究[J]. 河北工业大学学报, 2021, 50(3): 48-54.
|
|
WANG Hui, MA Xiuqin, CHEN Yue, et al. On the performance of a new type solar energy composite phase-change Kang[J]. Journal of Hebei University of Technology, 2021, 50(3): 48-54.
|
4 |
王俊霞. 二元有机复合相变蓄热材料的制备及导热性能研究[D]. 无锡: 江南大学, 2019.
|
|
WANG Junxia. Preparation and thermal conductivity research of binary organic composite phase change heat storage materials[D]. Wuxi: Jiangnan University, 2019.
|
5 |
林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.
|
|
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179.
|
6 |
侯俊英, 杨金星, 郝建军, 等. 石蜡/Fe-MIL-101-NH2金属有机骨架定形复合相变材料制备[J]. 农业工程学报, 2021, 37(15): 232-238.
|
|
HOU Junying, YANG Jinxing, HAO Jianjun, et al. Shape-stable phase change materials preparation of composite of paraffin/Fe-MIL-101-NH2 as metal-organic framework[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(15): 232-238.
|
7 |
WANG Y, LIU Z M, NIU X F, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for low-temperature thermal energy storage[J]. Energy & Fuels, 2019, 33(2): 1631-1636.
|
8 |
HUO J H, PENG Z G, FENG Q. Synthesis and properties of microencapsulated phase change material with a urea–formaldehyde resin shell and paraffin wax core[J]. Journal of Applied Polymer Science, 2020, 137(16): 48578.
|
9 |
NAIKWADI A T, SAMUI A B, MAHANWAR P A. Melamine-formaldehyde microencapsulated n-tetracosane phase change material for solar thermal energy storage in coating[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110676.
|
10 |
LIAO H H, CHEN W H, LIU Y, et al. A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability[J]. Composites Science and Technology, 2020, 189: 108010.
|
11 |
XU R, XIA X M, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: 124519.
|
12 |
HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering, 2021, 183: 116151.
|
13 |
SINHA-RAY S, SAHU R P, YARIN A L. Nano-encapsulated smart tunable phase change materials[J]. Soft Matter, 2011, 7(19): 8823.
|
14 |
SINHA-RAY S, SINHA-RAY S, SRIRAM H, et al. Flow of suspensions of carbon nanotubes carrying phase change materials through microchannels and heat transfer enhancement[J]. Lab Chip, 2014, 14(3): 494-508.
|
15 |
CHEN L J, ZOU R Q, XIA W, et al. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges[J]. ACS Nano, 2012, 6(12): 10884-10892.
|
16 |
QI G Q, YANG J, BAO R Y, et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J]. Nano Research, 2017, 10(3): 802-813.
|
17 |
KARAIPEKLI A, BIÇER A, SARı A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes[J]. Energy Conversion and Management, 2017, 134: 373-381.
|
18 |
ŞAHAN N, PAKSOY H. Investigating thermal properties of using nano-tubular ZnO powder in paraffin as phase change material composite for thermal energy storage[J]. Composites Part B: Engineering, 2017, 126: 88-93.
|
19 |
MA J K, SHANG T, REN L L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material[J]. Chemical Engineering Journal, 2020, 380: 122550.
|
20 |
邓建红, 费华, 王林雅, 等. 癸酸-石蜡/膨胀石墨定形相变材料的制备及性能[J]. 化工进展, 2020, 39(11): 4537-4543.
|
|
DENG Jianhong, FEI Hua, WANG Linya, et al. Preparation and properties of capric acid-paraffin/expanded graphite form-stable phase change materials[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4537-4543.
|
21 |
周璐, 付志强, 张蕾, 等. 石蜡-正辛酸/石墨相变材料的制备及热物性分析[J]. 包装工程, 2021, 42(17): 150-154.
|
|
ZHOU Lu, FU Zhiqiang, ZHANG Lei, et al. Preparation and thermophysical analysis of paraffin-octanoic acid/graphite phase change materials[J]. Packaging Engineering, 2021, 42(17): 150-154.
|
22 |
李岳, 李炯利, 朱巧思, 等. 石墨烯导热材料研究进展[J]. 材料工程, 2021, 49(11): 1-13.
|
|
LI Yue, LI Jiongli, ZHU Qiaosi, et al. Research progress in graphene based thermal conductivity materials[J]. Journal of Materials Engineering, 2021, 49(11): 1-13.
|
23 |
杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
|
|
DU Wenqing, FEI Hua, GU Qingjun, et al. Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 251-256.
|