化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4192-4203.DOI: 10.16085/j.issn.1000-6613.2021-2097
吴玉帅(), 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇(), 马晓迅
收稿日期:
2021-10-11
修回日期:
2022-01-14
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
陈汇勇
作者简介:
吴玉帅(1998—),男,硕士研究生,研究方向为杂原子掺杂beta分子筛的烯烃环氧化催化性能。E-mail:基金资助:
WU Yushuai(), YOU Qing, DONG Xujie, ZHU Ziqi, WANG Xu, CHEN Huiyong(), MA Xiaoxun
Received:
2021-10-11
Revised:
2022-01-14
Online:
2022-08-25
Published:
2022-08-22
Contact:
CHEN Huiyong
摘要:
采用液-固相同晶取代法分别制备了W、Mo、V和Ti掺杂的四种杂原子beta分子筛,并以环己烯和环辛烯为探针底物分子,系统性评价了W-beta、Mo-beta、V-beta和Ti-beta催化烯烃环氧化反应性能。结果表明,所制备的四种杂原子beta分子筛均具有较高的结晶度,且完好继承了母体Al-beta分子筛的微孔结构与纳米颗粒形貌;由于离子半径和M—O键长的差异,W和Mo的骨架掺入量相对较低,V和Ti的掺入量相对较高;催化烯烃环氧化反应中,有限的活性金属含量导致W-beta和Mo-beta催化环烯烃的转化率低于V-beta和Ti-beta,但W-beta、Mo-beta、V-beta的反应转换频率(TOF)较高,说明W、Mo、V金属位点的活性更高;催化环己烯环氧化反应中,V-beta催化剂易引发烯丙基氧化副反应,环氧化物选择性低于其他三种催化剂,且V活性组分氧化物形态含量较高,反应过程中易脱落,导致V-beta催化剂循环再生性能较差;Ti掺杂beta催化剂表现出最佳的烯烃环氧化反应性能,提高Ti含量可有效提高反应转化率,但骨架Ti掺入量存在极值,过多的Ti物种趋向于氧化物形态,降低反应活性(TOF值),因此适宜的骨架Ti掺杂有利于Ti-beta分子筛催化烯烃环氧化反应。
中图分类号:
吴玉帅, 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇, 马晓迅. 杂原子掺杂beta分子筛的烯烃环氧化催化性能[J]. 化工进展, 2022, 41(8): 4192-4203.
WU Yushuai, YOU Qing, DONG Xujie, ZHU Ziqi, WANG Xu, CHEN Huiyong, MA Xiaoxun. Synthesis of heteroatom-substituted beta zeolites for catalytic epoxidation of cyclic olefins[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4192-4203.
分子筛 | 金属离子 | 金属含量 /μmol·g-1 | 离子半径 /? | 电负性 | 金属-氧键 | 键长 /? |
---|---|---|---|---|---|---|
Ti-beta | Ti4+ | 272 | 0.605 | 1.54 | Ti—O | 1.80 |
V-beta | V5+ | 157 | 0.59 | 1.63 | V—O | 1.755 |
Mo-beta | Mo6+ | 12 | 0.59 | 2.16 | Mo—O | 1.83 |
W-beta | W6+ | 27 | 0.61 | 2.36 | W—O | 1.90 |
表1 各杂原子beta分子筛的金属含量及掺杂金属的离子半径、电负性和金属—氧键键长数据
分子筛 | 金属离子 | 金属含量 /μmol·g-1 | 离子半径 /? | 电负性 | 金属-氧键 | 键长 /? |
---|---|---|---|---|---|---|
Ti-beta | Ti4+ | 272 | 0.605 | 1.54 | Ti—O | 1.80 |
V-beta | V5+ | 157 | 0.59 | 1.63 | V—O | 1.755 |
Mo-beta | Mo6+ | 12 | 0.59 | 2.16 | Mo—O | 1.83 |
W-beta | W6+ | 27 | 0.61 | 2.36 | W—O | 1.90 |
分子筛 | 微孔比表面积/m2·g-1 | 外比表面积/m2·g-1 | 总比表面积/m2·g-1 | 微孔孔容/cm3·g-1 | 总孔容/cm3·g-1 |
---|---|---|---|---|---|
W-beta | 481 | 67 | 548 | 0.18 | 0.40 |
Mo-beta | 481 | 61 | 542 | 0.17 | 0.35 |
V-beta | 493 | 69 | 561 | 0.19 | 0.40 |
Ti-beta | 500 | 67 | 567 | 0.19 | 0.34 |
表2 母体Al-beta和杂原子W-beta、Mo-beta、V-beta和Ti-beta分子筛的织构性质数据
分子筛 | 微孔比表面积/m2·g-1 | 外比表面积/m2·g-1 | 总比表面积/m2·g-1 | 微孔孔容/cm3·g-1 | 总孔容/cm3·g-1 |
---|---|---|---|---|---|
W-beta | 481 | 67 | 548 | 0.18 | 0.40 |
Mo-beta | 481 | 61 | 542 | 0.17 | 0.35 |
V-beta | 493 | 69 | 561 | 0.19 | 0.40 |
Ti-beta | 500 | 67 | 567 | 0.19 | 0.34 |
催化剂 | 环己烯 | 环辛烯 | |||||||
转化率/% | 选择性/% | 转换频率(TOF)/h-1 | 转化率/% | 选择性/% | 转换频率(TOF)/h-1 | ||||
环氧环己烷 | 环己二醇 | 其他 | |||||||
W-beta | 2.1 | 49.1 | 44.2 | 6.7 | 77.8 | 2.3 | 99.3 | 85 | |
Mo-beta | 1.0 | 46.9 | 48.6 | 4.5 | 83.3 | 0.9 | 99.3 | 75 | |
V-beta | 25.2 | 30.1 | 44.7 | 25.2 | 160.5 | 13.9 | 99.2 | 88.5 | |
Ti-beta | 20.8 | 50.4 | 43.5 | 6.6 | 76.4 | 16.6 | 99.2 | 61 |
表3 杂原子beta分子筛催化环己烯和环辛烯环氧化反应性能
催化剂 | 环己烯 | 环辛烯 | |||||||
转化率/% | 选择性/% | 转换频率(TOF)/h-1 | 转化率/% | 选择性/% | 转换频率(TOF)/h-1 | ||||
环氧环己烷 | 环己二醇 | 其他 | |||||||
W-beta | 2.1 | 49.1 | 44.2 | 6.7 | 77.8 | 2.3 | 99.3 | 85 | |
Mo-beta | 1.0 | 46.9 | 48.6 | 4.5 | 83.3 | 0.9 | 99.3 | 75 | |
V-beta | 25.2 | 30.1 | 44.7 | 25.2 | 160.5 | 13.9 | 99.2 | 88.5 | |
Ti-beta | 20.8 | 50.4 | 43.5 | 6.6 | 76.4 | 16.6 | 99.2 | 61 |
样品名称 | 环己烯 | 环辛烯 | 参考 文献 | ||
---|---|---|---|---|---|
转化率/% | 选择性/% | 转化率/% | 选择性/% | ||
Ti-beta | 20.8 | 50.4 | 16.6 | 99.2 | 本工作 |
Ti-beta-0.015 | 10.9 | 49.5 | [ | ||
Ti-beta-PS | 9.2 | 69.1 | [ | ||
Ti-beta-DT | 16.2 | 68.6 | [ | ||
Ti-beta | 7.7 | 47.4 | [ | ||
Ti-beta | 4.6 | >99 | [ | ||
M-Ti-beta | 6.9 | >99 | [ |
表4 文献报道的Ti-beta分子筛催化烯烃环氧化反应性能
样品名称 | 环己烯 | 环辛烯 | 参考 文献 | ||
---|---|---|---|---|---|
转化率/% | 选择性/% | 转化率/% | 选择性/% | ||
Ti-beta | 20.8 | 50.4 | 16.6 | 99.2 | 本工作 |
Ti-beta-0.015 | 10.9 | 49.5 | [ | ||
Ti-beta-PS | 9.2 | 69.1 | [ | ||
Ti-beta-DT | 16.2 | 68.6 | [ | ||
Ti-beta | 7.7 | 47.4 | [ | ||
Ti-beta | 4.6 | >99 | [ | ||
M-Ti-beta | 6.9 | >99 | [ |
1 | LUO Yaling, LIU Changjun, YUE Hairong, et al. Selective oxidation of cyclopentene with H2O2 by using H3PW12O40 and TBAB as a phase transfer catalyst[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1851-1856. |
2 | ZHOU Tianzhu, ZHAO Yue, HAN Wenmei, et al. Enhanced solvent-free selective oxidation of cyclohexene to 1,2-cyclohexanediol by polyaniline@ halloysite nanotubes[J]. Journal of Materials Chemistry A, 2017, 5(34): 18230-18241. |
3 | 章彬, 刘欢, 张学龙, 等. SiO2负载钴系催化剂的环己烯环氧化性能[J]. 化工进展, 2019, 38(10): 4582-4587. |
ZHANG Bin, LIU Huan, ZHANG Xuelong, et al. Epoxidation of cyclohexene over SiO2 supported cobalt catalyst[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4582-4587. | |
4 | 宋万仓, 熊光, 臧甲忠, 等. 碱性添加剂在钛硅分子筛/H2O2催化丙烯环氧化反应中的作用[J]. 化工进展, 2020, 39(3): 1021-1028. |
SONG Wancang, XIONG Guang, ZANG Jiazhong, et al. Effect of basic additive in feedstock on propylene epoxidation catalyzed by TS-1/H2O2 [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1021-1028. | |
5 | Wolf PHILIP F, Barnes ROBERT K. Borate ester-induced decomposition of alkyl hydroperoxides: the epoxidation of olefins by electrophilic oxygen[J]. The Journal of Organic Chemistry, 1969, 34(11): 3441-3445. |
6 | LIANG Xiaohang, PENG Xinxin, LIU Dan, et al. Understanding the mechanism of N coordination on framework Ti of Ti-BEA zeolite and its promoting effect on alkene epoxidation reaction[J]. Molecular Catalysis, 2021, 511: 111750. |
7 | WANG Xu, YOU Qing, WU Yushuai, et al. Tungsten-substituted silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene[J]. Microporous and Mesoporous Materials, 2021, 317: 111028. |
8 | BARAN Rafal, FREDERIC Averseng, YANNICK Millot, et al. Incorporation of Mo into the vacant T-Atom sites of the framework of BEA zeolite as mononuclear Mo evidenced by XRD and FTIR, NMR, EPR, and DR UV-vis spectroscopies[J]. The Journal of Physical Chemistry C, 2014, 118(8): 4143-4150. |
9 | 刘民, 高健, 郭新闻, 等. 气固相法制备的高效Ti-ZSM-5沸石的表征和催化性能[J]. 化工学报, 2006, 57(4): 791-798. |
LIU Min, GAO Jian, GUO Xinwen, et al. Characterization and catalytic properties of highly effective Ti-ZSM-5 zeolite prepared by gas-solid reaction[J]. CIESC Journal, 2006, 57(4): 791-798. | |
10 | 张志华, 杜威, 段学志, 等. 表面改性未焙烧TS-1固载金催化丙烯氢氧环氧化反应性能研究[J]. 化工学报, 2021, 72(7): 3613-3625. |
ZHANG Zhihua, DU Wei, DUAN Xuezhi, et al. Au nanoparticles immobilized on surface modified TS-1 as high-efficiency bifunctional catalyst for propylene epoxidation with H2 and O2 [J]. CIESC Journal, 2021, 72(7): 3613-3625. | |
11 | LI Chengeng, LU Yiqun, WU Haihong, et al. A hierarchically core/shell-structured titanosilicate with multiple mesopore systems for highly efficient epoxidation of alkenes[J]. Chemical Communications, 2015, 51(80): 14905-14908. |
12 | XIONG Guang, CAO Yuanyuan, GUO Zhendong, et al. The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 190-196. |
13 | BIANCHI Daniele, BALDUCCI Luigi, BORTOLO Rossella, et al. Oxidation of benzene to phenol with hydrogen peroxide catalyzed by a modified titanium silicalite(TS-1B)[J]. Advanced Synthesis & Catalysis, 2007, 349(6): 979-986. |
14 | 林栋, 冯翔, 刘熠斌, 等. 高性能钛硅分子筛可控合成及其催化丙烯气相环氧化研究进展[J]. 化工进展, 2022, 41(5): 2389-2403. |
LIN Dong, FENG Xiang, LIU Yibin, et al. Research progress on the controllable synthesis of high-performance titanium silicalite and its catalytic propene epoxidation with gaseous hydrogen and oxygen[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2389-2403. | |
15 | WANG Manyun, WANG Xu, YOU Qing, et al. Dual-template synthesis of hierarchically layered titanosilicate-1 zeolites for catalytic epoxidation of cyclooctene[J]. Microporous and Mesoporous Materials, 2021, 323: 111207. |
16 | YOU Qing, WANG Xu, WU Yushuai, et al. Hierarchical Ti-beta with a three-dimensional ordered mesoporosity for catalytic epoxidation of bulky cyclic olefins[J]. New Journal of Chemistry, 2021, 45(23): 10303-10314. |
17 | LI Na, WANG Manyun, YOU Qing, et al. Bolaform surfactant-directed synthesis of TS-1 zeolite nanosheets for catalytic epoxidation of bulky cyclic olefins[J]. Catalysis Science & Technology, 2020, 10(5): 1323-1335. |
18 | WU Peng, KOMATSU Takayuki, YASHIMA Tatsuaki. Ammoximation of ketones over titanium mordenite[J]. Journal of Catalysis, 1997, 168(2): 400-411. |
19 | WU Peng, LIU Yueming, HE Minyuan, et al. A novel titanosilicate with MWW structure: catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide[J]. Journal of Catalysis, 2004, 228(1): 183-191. |
20 | ADAM Waldemar, CORMA Avelion, Indrasena REDDY T, et al. Diastereoselective catalytic epoxidation of chiral allylic alcohols by the TS-1 and Ti-β zeolites: evidence for a hydrogen-bonded, peroxy-type loaded complex as oxidizing species[J]. The Journal of Organic Chemistry, 1997, 62(11): 3631-3637. |
21 | VAN DER WAAL J C, RIGUTTO M S, van BEKKUM H. Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes[J]. Applied Catalysis A: General, 1998, 167(2): 331-342. |
22 | Yasuhide GOA, WU Peng, TATSUMI Takashi. Catalytic performance of [Ti,Al]-beta in the alkene epoxidation controlled by the postsynthetic ion exchange[J]. The Journal of Physical Chemistry B, 2004, 108(24): 8401-8411. |
23 | DE Baerdemaeker T, STEENACKERS B, DE Vos D. Ti-substituted zeolite beta: a milestone in the design of large pore oxidation catalysts[J]. Chemical communications, 2013, 49(68): 7474-7476. |
24 | AYLA E Zeynep, POTTS David S, BREGANTE Daniel T, et al. Alkene epoxidations with H2O2 over groups 4—6 metal-substituted BEA zeolites: reactive intermediates, reaction pathways, and linear free-energy relationships[J]. ACS Catalysis, 2021, 11(1): 139-154. |
25 | GRAND Julien, TALAPANENI Siddulu Naidu, VICENTE Aurélie, et al. One-pot synthesis of silanol-free nanosized MFI zeolite[J]. Nature Materials, 2017, 16(10): 1010-1015. |
26 | KONNOV Stanislav V, DUBRAY Florent, CLATWORTHY Edwin B, et al. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angewandte Chemie International Edition, 2020, 59(44): 19553-19560. |
27 | ZHU Zhiguo, GUAN Yejun, MA Haikuo, et al. Hydrothermal synthesis of boron-free Zr-MWW and Sn-MWW zeolites as robust Lewis acid catalysts[J]. Chemical Communications, 2020, 56(34): 4696-4699. |
28 | WANG Baorong, PENG Xinxin, YANG Jianming, et al. Nano-crystalline, hierarchical zeolite Ti-beta: hydrothermal synthesis and catalytic performance in alkenes epoxidation reactions[J]. Microporous and Mesoporous Materials, 2019, 278: 30-34. |
29 | BREGANTE Daniel T, THORNBURG Nicholas E, NOTESTEIN Justin M, et al. Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts[J]. Acs Catalysis, 2018, 8(4): 2995-3010. |
30 | SUSHKEVICH Vitaly L, PALAGIN Dennis, IVANOVA Irina I. With open arms: open sites of ZrBEA zeolite facilitate selective synthesis of butadiene from ethanol[J]. ACS Catalysis, 2015, 5(8): 4833-4836. |
31 | HELD Agnieszka, Jolanta KOWALSKA-KUŚ, MILLOT Yannick, et al. Influence of the preparation procedure of vanadium-containing SiBEA zeolites on their catalytic activity in propene epoxidation[J]. The Journal of Physical Chemistry C, 2018, 122(32): 18570-18582. |
32 | MA Haikuo, ZHU Zhiguo, TANG Pengpeng, et al. Hierarchical Ti-Beta zeolites with uniform intracrystalline mesopores hydrothermally synthesized via interzeolite transformation for oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2021, 311: 110702. |
33 | ZHUANG Wenxia, LIU Xiaoling, CHEN Lei, et al. One-pot hydrothermal synthesis of ultrafine Pd clusters within Beta zeolite for selective oxidation of alcohols[J]. Green Chemistry, 2020, 22(13): 4199-4209. |
34 | HOLM Martin S, PAGÁN-TORRES Yomaira J, SARAVANAMURUGAN Shunmugavel, et al. Sn-Beta catalysed conversion of hemicellulosic sugars[J]. Green Chemistry, 2012, 14(3): 702-706. |
35 | MINTOVA S, VALTCHEV V, ONFROY T, et al. Variation of the Si/Al ratio in nanosized zeolite Beta crystals[J]. Microporous and mesoporous materials, 2006, 90(1/2/3): 237-245. |
36 | WANG Bowen, XU Hao, ZHU Zhiguo, et al. Ultrafast synthesis of nanosized Ti-Beta as an efficient oxidation catalyst via a structural reconstruction method[J]. Catalysis Science & Technology, 2019, 9(8): 1857-1866. |
37 | ABDI Sarra, KUBU Martin, LI Ang, et al. Addressing confinement effect in alkenes epoxidation using ‘isoreticular’ titanosilicate zeolite catalysts[J]. Catalysis Today, 2022, 390/391: 326-334. |
38 | REN Wenchao, HUA Zile, GE Tongguang, et al. Post-synthesis of hierarchically structured Ti-β zeolites and their epoxidation catalytic performance[J]. Chinese Journal of Catalysis, 2015, 36(6): 906-912. |
39 | DZWIGAJ Stanislaw, MASSIANI Pascale, DAVIDSON Anne, et al. Role of silanol groups in the incorporation of V in β zeolite[J]. Journal of Molecular Catalysis A: Chemical, 2000, 155(1/2): 169-182. |
40 | Joaquin PEREZ-PARIENTE, MARTENS Johan A, JACOBS Peter A. Crystallization mechanism of zeolite beta from (TEA)2O, Na2O and K2O containing aluminosilicate gels[J]. Applied Catalysis, 1987, 31(1): 35-64. |
41 | VAYSSILV Georgi N. Structural and physicochemical features of titanium silicalites[J]. Catalysis Reviews, 1997, 39(3): 209-251. |
42 | ZUO Yi, LIU Min, MA Mengtong, et al. Enhanced catalytic activity on post-synthesized hollow titanium silicalite-1 with high titanium content on the external surface[J]. ChemistrySelect, 2016, 1(19): 6160-6166. |
43 | XIONG Guang, LI Can, FENG Zhaochi, et al. Surface coordination structure of molybdate with extremely low loading on γ-alumina characterized by UV resonance Raman spectroscopy[J]. Journal of Catalysis, 1999, 186(1): 234-237. |
44 | ZHUANG Jianqin, MA Ding, YAN Zhimin, et al. Effect of acidity in TS-1 zeolites on product distribution of the styrene oxidation reaction[J]. Applied Catalysis A: General, 2004, 258(1): 1-6. |
45 | POPPE Juliane, WARKENTIN Eberhard, DEMMER Ulrike, et al. Structural diversity of polyoxomolybdate clusters along the three-fold axis of the molybdenum storage protein[J]. Journal of Inorganic Biochemistry, 2014, 138: 122-128. |
46 | SHANNON R D, PREWITT C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925-946. |
47 | KULKARNI Bhakti S, KRISHNAMURTY Sailaja, Sourav PAL. Probing Lewis acidity and reactivity of Sn-and Ti-beta zeolite using industrially important moieties: a periodic density functional study[J]. Journal of Molecular Catalysis A: Chemical, 2010, 329(1/2): 36-43. |
48 | TREACY M M J, NEWSAM J M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth[J]. Nature, 1988, 332(6161): 249-251. |
49 | ZHU Jie, ZHU Yihan, ZHU Liangkui, et al. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template[J]. Journal of the American Chemical Society, 2014, 136(6): 2503-2510. |
50 | YANG Bingyu, LECLERCQ Loic, SCHMITT Veronique, et al. Colloidal tectonics for tandem synergistic Pickering interfacial catalysis: oxidative cleavage of cyclohexene oxide into adipic acid[J]. Chemical Science, 2018, 10(2): 501-507. |
51 | SONG Yuexiao, XIN Feng, ZHANG Lexiang, et al. Oxidation of cyclohexene in the presence of transition-metal-substituted phosphotungstates and hydrogen peroxide: catalysis and reaction pathways[J]. ChemCatChem, 2017, 9(21): 4139-4147. |
52 | ROMANOWSKI Grzegorz, KIRA Jaromir, WERA Michal. Five-and six-coordinate vanadium (Ⅴ) complexes with tridentate Schiff base ligands derived from (+)-S-isoleucinol: synthesis, characterization and catalytic activity in the oxidation of sulfides and olefins[J]. Polyhedron, 2014, 67: 529-539. |
53 | SALAVATI-NIASARI M, ELZAMI M R, MANSOURNIA M R, et al. Alumina-supported vanadyl complexes as catalysts for the CH bond activation of cyclohexene with tert-butylhydroperoxide[J]. Journal of Molecular Catalysis A: Chemical, 2004, 221(1/2): 169-175. |
54 | ZHU Zhiguo, XU Hao, WANG Baowen, et al. Intensified interzeolite transformation: ultrafast synthesis of active and stable Ti-beta zeolites without solvents[J]. Chemical Communications, 2019, 55(95): 14279-14282. |
55 | LUO Yuying, ZHU Yadong, PAN Jianguo, et al. Fast synthesis of hierarchical Al-free Ti-BEA plate-like nanocrystals from low-templated dry gel via a steam-assisted conversion method[J]. Green Chemistry, 2020, 22(5): 1681-1697. |
56 | WU PENG, NUNTASRI Duangamol, RUAN Juanfang, et al. Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes[J]. The Journal of Physical Chemistry B, 2004, 108(50): 19126-19131. |
[1] | 何志勇, 郭天佛, 王金利, 吕锋. 二氧化碳/环氧化合物开环共聚催化剂进展[J]. 化工进展, 2023, 42(4): 1847-1859. |
[2] | 马明超, 臧甲忠, 于海斌, 范景新, 郭春垒, 靳凤英. 金属改性对多环芳烃选择性开环Pt/Beta催化剂性能的影响[J]. 化工进展, 2021, 40(11): 6113-6120. |
[3] | 刘玉梅, 安然, 陈圣新, 张瑞锐, 刘瑞霞. 环氧化合物亲核开环反应过程强化研究进展[J]. 化工进展, 2020, 39(12): 4877-4895. |
[4] | 杨美, 钟向宏, 陈群. 离子液体催化二氧化碳合成环状碳酸酯的研究进展[J]. 化工进展, 2017, 36(09): 3300-3308. |
[5] | 秦 刚1,3,范利丹2,曹少魁3,卜站伟3,陈 涛1,易 奎1. 二氧化碳与环氧化合物共聚反应催化剂的研究进展[J]. 化工进展, 2013, 32(02): 327-332. |
[6] | 刘春英,柳云骐,安长华,王槐平,冯锡兰. 杂原子分子筛的水热合成与应用研究进展 [J]. 化工进展, 2006, 25(6): 646-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |