化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3784-3793.DOI: 10.16085/j.issn.1000-6613.2021-1819
黄平安1(), 徐俊2, 杨宇轩1, 潘宇涵1, 王新文2, 黄群星1()
收稿日期:
2021-08-25
修回日期:
2021-11-09
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
黄群星
作者简介:
黄平安(1996—),男,硕士研究生,研究方向为废轮胎资源化利用。E-mail:基金资助:
HUANG Ping’an1(), XU Jun2, YANG Yuxuan1, PAN Yuhan1, WANG Xinwen2, HUANG Qunxing1()
Received:
2021-08-25
Revised:
2021-11-09
Online:
2022-07-25
Published:
2022-07-23
Contact:
HUANG Qunxing
摘要:
针对热解炭颗粒大、表面活性弱、吸附能力差的问题,本文提出了一种机械球磨表面改性方法,探讨了不同球磨改性参数下热解炭对磺胺甲唑(SMZ)的吸附效果。以废橡胶连续热解炭为原料,采用不锈钢球磨制得具有不同表面性质的球磨炭,分析了球磨前后热解炭的结构、表面性质及表面形貌,并对比了球磨改性前后的SMZ吸附性能。结果表明,球磨改性过程可以有效改善废轮胎热解炭结构及表面性质,球磨处理2h的热解炭对SMZ的吸附效果最好,吸附量达到59.37mg/g,吸附动力学符合伪二级吸附模型。
中图分类号:
黄平安, 徐俊, 杨宇轩, 潘宇涵, 王新文, 黄群星. 球磨改性热解炭吸附磺胺甲唑[J]. 化工进展, 2022, 41(7): 3784-3793.
HUANG Ping’an, XU Jun, YANG Yuxuan, PAN Yuhan, WANG Xinwen, HUANG Qunxing. Ball milled modified pyrolysis carbon adsorb sulfamethoxazole[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3784-3793.
样品 | 最小粒径/μm | 最大粒径/μm | 平均粒径/μm | d90/μm |
---|---|---|---|---|
C | 0.08 | 541.89 | 120.30 | 278.50 |
BM0.5 | 0.08 | 43.67 | 14.07 | 30.24 |
BM1 | 0.34 | 2.92 | 1.31 | 2.15 |
BM2 | 0.31 | 2.92 | 1.19 | 2.11 |
BM5 | 0.28 | 2.92 | 1.12 | 2.11 |
BM10 | 0.28 | 2.92 | 1.09 | 2.08 |
表1 球磨前后热解炭的粒度参数
样品 | 最小粒径/μm | 最大粒径/μm | 平均粒径/μm | d90/μm |
---|---|---|---|---|
C | 0.08 | 541.89 | 120.30 | 278.50 |
BM0.5 | 0.08 | 43.67 | 14.07 | 30.24 |
BM1 | 0.34 | 2.92 | 1.31 | 2.15 |
BM2 | 0.31 | 2.92 | 1.19 | 2.11 |
BM5 | 0.28 | 2.92 | 1.12 | 2.11 |
BM10 | 0.28 | 2.92 | 1.09 | 2.08 |
样品 | SBET/m2?g-1 | Smicro/m2?g-1 | RSmicro/% | PS/nm | Vtotal/cm3?g-1 | Vmicro/cm3?g-1 | RVmicro/% | DP/μm |
---|---|---|---|---|---|---|---|---|
C | 88.31 | 8.03 | 9.09 | 28.57 | 0.63 | 0.0025 | 0.39 | 120.30 |
BM0.5 | 112.87 | 17.06 | 15.11 | 13.61 | 0.38 | 0.0073 | 1.90 | 14.07 |
BM1 | 113.52 | 20.14 | 17.74 | 11.57 | 0.33 | 0.0092 | 2.80 | 1.31 |
BM2 | 223.73 | 101.44 | 45.34 | 5.56 | 0.31 | 0.0433 | 13.91 | 1.19 |
BM5 | 203.03 | 94.75 | 46.67 | 5.54 | 0.28 | 0.0402 | 14.31 | 1.12 |
BM10 | 113.97 | 44.27 | 38.84 | 7.71 | 0.22 | 0.0190 | 8.64 | 1.09 |
表2 球磨前后热解炭的吸附能力、结构参数、平均粒度
样品 | SBET/m2?g-1 | Smicro/m2?g-1 | RSmicro/% | PS/nm | Vtotal/cm3?g-1 | Vmicro/cm3?g-1 | RVmicro/% | DP/μm |
---|---|---|---|---|---|---|---|---|
C | 88.31 | 8.03 | 9.09 | 28.57 | 0.63 | 0.0025 | 0.39 | 120.30 |
BM0.5 | 112.87 | 17.06 | 15.11 | 13.61 | 0.38 | 0.0073 | 1.90 | 14.07 |
BM1 | 113.52 | 20.14 | 17.74 | 11.57 | 0.33 | 0.0092 | 2.80 | 1.31 |
BM2 | 223.73 | 101.44 | 45.34 | 5.56 | 0.31 | 0.0433 | 13.91 | 1.19 |
BM5 | 203.03 | 94.75 | 46.67 | 5.54 | 0.28 | 0.0402 | 14.31 | 1.12 |
BM10 | 113.97 | 44.27 | 38.84 | 7.71 | 0.22 | 0.0190 | 8.64 | 1.09 |
样品 | 元素/% | |||
---|---|---|---|---|
C | O | S | Si | |
C | 76.88 | 20.56 | 2.07 | 0.49 |
BM0.5 | 76.14 | 21.69 | 1.83 | 0.35 |
BM1 | 76.51 | 21.86 | 1.22 | 0.42 |
BM2 | 73.19 | 23.80 | 2.40 | 0.62 |
BM5 | 70.20 | 26.25 | 2.85 | 0.70 |
BM10 | 68.46 | 28.19 | 2.67 | 0.68 |
表3 球磨前后热解炭的EDS数据(质量分数)
样品 | 元素/% | |||
---|---|---|---|---|
C | O | S | Si | |
C | 76.88 | 20.56 | 2.07 | 0.49 |
BM0.5 | 76.14 | 21.69 | 1.83 | 0.35 |
BM1 | 76.51 | 21.86 | 1.22 | 0.42 |
BM2 | 73.19 | 23.80 | 2.40 | 0.62 |
BM5 | 70.20 | 26.25 | 2.85 | 0.70 |
BM10 | 68.46 | 28.19 | 2.67 | 0.68 |
样品 | Langmuir等温线模型 | Freundlich等温线模型 | |||||
---|---|---|---|---|---|---|---|
qm/mg·g-1 | KL | R2 | KF | n | R2 | ||
C | 1.939 | 0.255 | 0.984 | 0.590 | 3.214 | 0.909 | |
BM0.5 | 26.767 | 0.278 | 0.989 | 7.463 | 2.821 | 0.947 | |
BM1 | 27.981 | 0.324 | 0.992 | 8.192 | 2.879 | 0.923 | |
BM2 | 55.424 | 0.942 | 0.990 | 21.238 | 3.036 | 0.830 | |
BM5 | 50.118 | 0.816 | 0.990 | 18.974 | 3.099 | 0.867 | |
BM10 | 33.897 | 0.293 | 0.993 | 9.452 | 2.774 | 0.938 |
表4 两种等温线模型的拟合参数
样品 | Langmuir等温线模型 | Freundlich等温线模型 | |||||
---|---|---|---|---|---|---|---|
qm/mg·g-1 | KL | R2 | KF | n | R2 | ||
C | 1.939 | 0.255 | 0.984 | 0.590 | 3.214 | 0.909 | |
BM0.5 | 26.767 | 0.278 | 0.989 | 7.463 | 2.821 | 0.947 | |
BM1 | 27.981 | 0.324 | 0.992 | 8.192 | 2.879 | 0.923 | |
BM2 | 55.424 | 0.942 | 0.990 | 21.238 | 3.036 | 0.830 | |
BM5 | 50.118 | 0.816 | 0.990 | 18.974 | 3.099 | 0.867 | |
BM10 | 33.897 | 0.293 | 0.993 | 9.452 | 2.774 | 0.938 |
样品 | 伪一级动力学模型 | 伪二级动力学模型 | |||||
---|---|---|---|---|---|---|---|
k1/mg | qe,cal/mg | R2 | k2/g | qe,cal/mg | R2 | ||
C | 0.00099 | 1.31 | 0.946 | 0.0062 | 4.63 | 0.999 | |
BM0.5 | 0.0012 | 6.42 | 0.965 | 0.0015 | 28.80 | 0.999 | |
BM1 | 0.0013 | 9.29 | 0.971 | 0.0010 | 32.63 | 0.999 | |
BM2 | 0.0012 | 12.82 | 0.944 | 0.0008 | 68.68 | 0.999 | |
BM5 | 0.0014 | 16.81 | 0.919 | 0.0006 | 67.80 | 0.999 | |
BM10 | 0.0015 | 14.77 | 0.976 | 0.0006 | 43.74 | 0.999 |
表5 两种动力学模型的拟合参数
样品 | 伪一级动力学模型 | 伪二级动力学模型 | |||||
---|---|---|---|---|---|---|---|
k1/mg | qe,cal/mg | R2 | k2/g | qe,cal/mg | R2 | ||
C | 0.00099 | 1.31 | 0.946 | 0.0062 | 4.63 | 0.999 | |
BM0.5 | 0.0012 | 6.42 | 0.965 | 0.0015 | 28.80 | 0.999 | |
BM1 | 0.0013 | 9.29 | 0.971 | 0.0010 | 32.63 | 0.999 | |
BM2 | 0.0012 | 12.82 | 0.944 | 0.0008 | 68.68 | 0.999 | |
BM5 | 0.0014 | 16.81 | 0.919 | 0.0006 | 67.80 | 0.999 | |
BM10 | 0.0015 | 14.77 | 0.976 | 0.0006 | 43.74 | 0.999 |
样品 | kd1/mg | kd2/mg |
---|---|---|
C | 0.05 | 0.02 |
BM0.5 | 0.35 | 0.11 |
BM1 | 0.60 | 0.15 |
BM2 | 1.01 | 0.19 |
BM5 | 1.63 | 0.25 |
BM10 | 0.89 | 0.22 |
表6 粒子扩散模型的拟合参数
样品 | kd1/mg | kd2/mg |
---|---|---|
C | 0.05 | 0.02 |
BM0.5 | 0.35 | 0.11 |
BM1 | 0.60 | 0.15 |
BM2 | 1.01 | 0.19 |
BM5 | 1.63 | 0.25 |
BM10 | 0.89 | 0.22 |
1 | SIENKIEWICZ M, KUCINSKA-LIPKA J, JANIK H, et al. Progress in used tyres management in the European Union: a review[J]. Waste Management, 2012, 32(10): 1742-1751. |
2 | MANCHÓN-VIZUETE E, MACÍAS-GARCÍA A, NADAL GISBERT A, et al. Adsorption of mercury by carbonaceous adsorbents prepared from rubber of tyre wastes[J]. Journal of Hazardous Materials, 2005, 119(1/2/3): 231-238. |
3 | MARTÍNEZ J D, PUY N, MURILLO R, et al. Waste tyre pyrolysis—A review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 179-213. |
4 | ACOSTA R, NABARLATZ D, SÁNCHEZ-SÁNCHEZ A, et al. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 823-833. |
5 | 杨殿才, 潘宇涵, 黄群星, 等. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650. |
YANG Diancai, PAN Yuhan, HUANG Qunxing, et al. Study on catalytic reforming of tar at low temperature to produce hydrogen-rich gas by tire pyrolysis char[J]. CIESC Journal, 2020, 71(2): 642-650. | |
6 | 刘英俊, 乔慧君, 杜爱华. 废轮胎热裂解研究进展[J]. 世界橡胶工业, 2015, 42(1): 41-46. |
LIU Yingjun, QIAO Huijun, DU Aihua. Research progress on the pyrolysis of scrap tire[J]. World Rubber Industry, 2015, 42(1): 41-46. | |
7 | 周作艳. 废旧轮胎热解炭黑的改性及应用研究[D]. 青岛: 青岛科技大学, 2017. |
ZHOU Zuoyan. The modification and applycation of waste tire's pyrolytic carbon black[D]. Qingdao, China: Qingdao University of Science & Technology, 2017. | |
8 | GUPTA V K, NAYAK A, AGARWAL S, et al. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions[J]. Journal of Colloid and Interface Science, 2014, 417: 420-430. |
9 | TRUBETSKAYA A, KLING J, ERSHAG O, et al. Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black[J]. Journal of Hazardous Materials, 2019, 365: 846-856. |
10 | CONDE-RIVERA L R, SUAREZ-ESCOBAR A F, MARIN-PEREZ J J, et al. TiO2 supported on activated carbon from tire waste for ibuprofen removal[J]. Materials Letters, 2021, 291: 129590. |
11 | ACOSTA R, FIERRO V, MARTINEZ DE YUSO A, et al. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char[J]. Chemosphere, 2016, 149: 168-176. |
12 | XING T, SUNARSO J, YANG W R, et al. Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles[J]. Nanoscale, 2013, 5(17): 7970. |
13 | NAGHDI M, TAHERAN M, BRAR S K, et al. A green method for production of nanobiochar by ball milling-optimization and characterization[J]. Journal of Cleaner Production, 2017, 164: 1394-1405. |
14 | LYU H H, GAO B, HE F, et al. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue[J]. Chemical Engineering Journal, 2018, 335: 110-119. |
15 | XU X Y, XU Z B, HUANG J S, et al. Sorption of reactive red by biochars ball milled in different atmospheres: co-effect of surface morphology and functional groups[J]. Chemical Engineering Journal, 2021, 413: 127468. |
16 | HUANG J S, ZIMMERMAN A R, CHEN H, et al. Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater[J]. Environmental Pollution, 2020, 258: 113809. |
17 | ZHANG D W, HE Q Q, HU X L, et al. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126254. |
18 | XIANG W, WAN Y S, ZHANG X Y, et al. Adsorption of tetracycline hydrochloride onto ball-milled biochar: governing factors and mechanisms[J]. Chemosphere, 2020, 255: 127057. |
19 | ZHUANG Z C, WANG L, TANG J C. Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions[J]. Journal of Hazardous Materials, 2021, 406: 124676. |
20 | YANG Y X, LIN B C, SUN C, et al. Facile synthesis of tailored mesopore-enriched hierarchical porous carbon from food waste for rapid removal of aromatic VOCs[J]. Science of the Total Environment, 2021, 773: 145453. |
21 | YANG Y X, SUN C, LIN B C, et al. Surface modified and activated waste bone char for rapid and efficient VOCs adsorption[J]. Chemosphere, 2020, 256: 127054. |
22 | WANG A Y, SUN K, WU L P, et al. Co-carbonization of biomass and oily sludge to prepare sulfamethoxazole super-adsorbent materials[J]. Science of the Total Environment, 2020, 698: 134238. |
23 | KUMAR M, XIONG X N, WAN Z H, et al. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials[J]. Bioresource Technology, 2020, 312: 123613. |
24 | NASRULLAH A, KHAN A S, BHAT A H, et al. Effect of short time ball milling on physicochemical and adsorption performance of activated carbon prepared from mangosteen peel waste[J]. Renewable Energy, 2021, 168: 723-733. |
25 | ABU-ZIED B M, SCHWIEGER W, ASIRI A M. Effect of ball milling on the structural and textural features of MCM-41 mesoporous material[J]. Microporous and Mesoporous Materials, 2015, 218: 153-159. |
26 | XIANG W, ZHANG X Y, CHEN K Q, et al. Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)[J]. Chemical Engineering Journal, 2020, 385: 123842. |
27 | ABOULKAS A, HAMMANI H, ACHABY M EL, et al. Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char[J]. Bioresource Technology, 2017, 243: 400-408. |
28 | MORAL-RODRÍGUEZ A I, LEYVA-RAMOS R, OCAMPO-PÉREZ R, et al. Removal of ronidazole and sulfamethoxazole from water solutions by adsorption on granular activated carbon: equilibrium and intraparticle diffusion mechanisms[J]. Adsorption, 2016, 22(1): 89-103. |
29 | ZHANG Q R, WANG J M, LYU H H, et al. Ball-milled biochar for galaxolide removal: sorption performance and governing mechanisms[J]. Science of the Total Environment, 2019, 659: 1537-1545. |
30 | LI R H, ZHANG Y C, DENG H X, et al. Removing tetracycline and Hg(Ⅱ) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation[J]. Journal of Hazardous Materials, 2020, 384: 121095. |
31 | YU F, LI Y, HAN S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153: 365-385. |
32 | 方梦祥, 姚鹏, 岑建孟, 等. 活性炭吸附处理含酚废水的研究进展[J]. 化工进展, 2018, 37(2): 744-751. |
FANG Mengxiang, YAO Peng, CEN Jianmeng, et al. Adsorption treatment of phenolic wastewater by activated carbon: a review[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 744-751. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[11] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[12] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |