1 |
刘建国. “减量化”“资源化”“无害化”科学内涵与相互关系解析[J]. 环境与可持续发展, 2020, 45(5): 23-26.
|
|
LIU Jianguo. Analysis to the scientific connotation and relationship of “minimization”, “valorization” and “environmentally sound management” of solid waste[J]. Environment and Sustainable Development, 2020, 45(5): 23-26.
|
2 |
中华人民共和国生态环境部. 2016—2019年全国生态环境统计公报[R]. 2020.
|
|
Ministry of Ecology and Environment of the People's Republic of China. 2016—2019 National Statistical Bulletin on Ecology and Environment[R]. 2020.
|
3 |
程程. 城市固体废弃物处理及资源化利用的有效途径[J]. 中国资源综合利用, 2020, 38(4): 111-113.
|
|
CHENG Cheng. Effective ways for municipal solid waste treatment and resource utilization[J]. China Resources Comprehensive Utilization, 2020, 38(4): 111-113.
|
4 |
GUO W C, ZHANG Z Y, ZHAO Q X, et al. Mechanical properties and microstructure of binding material using slag-fly ash synergistically activated by wet-basis soda residue-carbide slag[J]. Construction and Building Materials, 2021, 269: 121301.
|
5 |
王博, 宋永一, 王鑫, 等. 有机固体废弃物热化学制氢研究进展[J]. 化工进展, 2021, 40(2): 709-711.
|
|
WANG Bo, SONG Yongyi, WANG Xin, et al. Hydrogen production from organic solid waste by thermochemical conversion process: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 709-711
|
6 |
NAI C X, TANG M Q, LIU Y Q, et al. Potentially contamination and health risk to shallow groundwater caused by closed industrial solid waste landfills: site reclamation evaluation strategies[J]. Journal of Cleaner Production, 2021, 286: 125402.
|
7 |
VASSILEV S V, KITANO K, TAKEDA S, et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology, 1995, 45(1): 27-51.
|
8 |
姚星一. 煤灰熔点与化学成分的关系[J]. 燃料化学学报, 1965(2): 151-161.
|
|
YAO Hsingi. Relationship of coal ash fusibility to chemical composition[J]. Journal of Fuel Chemistry and Technology, 1965(2): 151-161.
|
9 |
LIU Y Z, WANG Z H, LYU Y, et al. Inhibition of sodium release from Zhundong coal via the addition of mineral additives: a combination of online multi-point LIBS and offline experimental measurements[J]. Fuel, 2018, 212: 498-505.
|
10 |
WANG X B, XU Z X, WEI B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: a study from ash evaporating to condensing[J]. Applied Thermal Engineering, 2015, 80: 150-159.
|
11 |
LI G D, LI S Q, HUANG Q, et al. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143: 430-437.
|
12 |
CHUDNOVSKY B, TALANKER A, BERMAN Y, et al. Prediction of performance from PRB coal fired in utility boilers with various furnace and firing system arrangements[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(12): 124502.
|
13 |
GAO X P, RAHIM M U, CHEN X X, et al. Significant contribution of organically-bound Mg, Ca, and Fe to inorganic PM10 emission during the combustion of pulverized Victorian brown coal[J]. Fuel, 2014, 117: 825-832.
|
14 |
马炜晨. 煤与生物质掺烧过程积灰结渣特性及灰烧结特性的实验研究[D]. 杭州: 浙江大学, 2018.
|
|
MA Weichen. Experimental investigation on ash eposition and ash sintering behavior during co-combustion of coal and biomass[D]. Hangzhou: Zhejiang University, 2018.
|
15 |
OTSUKA N. Chemistry and melting characteristics of fireside deposits taken from boiler tubes in waste incinerators[J]. Corrosion Science, 2011, 53(6): 2269-2276.
|
16 |
滕叶. 垃圾焚烧厂沾污结渣特性及控制措施探讨[J]. 电力科技与环保, 2020, 36(1): 50-52.
|
|
TENG Ye. Analysis on fouling and slagging characteristics and control measures in MSW incineration power plant[J]. Electric Power Technology and Environmental Protection, 2020, 36(1): 50-52.
|
17 |
林晓青, 陈志良, 李晓东, 等. 煤粉炉掺烧生活垃圾对灰渣特性的影响研究[J]. 化工学报, 2018, 69(6): 2708-2713.
|
|
LIN Xiaoqing, CHEN Zhiliang, LI Xiaodong, et al. Study on characterization of ash from co-combustion of coal with municipal solid waste[J]. CIESC Journal, 2018, 69(6): 2708-2713.
|
18 |
WU H, GLARBORG P, FRANDSEN F J, et al. Trace elements in co-combustion of solid recovered fuel and coal[J]. Fuel Processing Technology, 2013, 105: 212-221.
|
19 |
HOSSAIN N, MORNI N A H. Co-pelletization of microalgae-sewage sludge blend with sub-bituminous coal as solid fuel feedstock[J]. BioEnergy Research, 2020, 13(2): 618-629.
|
20 |
庄修政, 宋艳培, 詹昊, 等. 水热污泥与煤在混燃过程中的协同效应特性研究[J]. 燃料化学学报, 2018, 46(12): 1437-1446.
|
|
ZHUANG Xiuzheng, SONG Yanpei, ZHAN Hao, et al. Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(12): 1437-1446.
|
21 |
李德波, 崔乘亮, 蒋勇军, 等. 煤和市政污泥掺烧的灰熔融特性研究[J]. 发电技术, 2019, 40(4): 347-354.
|
|
LI Debo, CUI Chengliang, JIANG Yongjun, et al. Investigation of fusion characteristics in co-combustion of coal with municipal sludge[J]. Power Generation Technology, 2019, 40(4): 347-354.
|
22 |
楼亿红. 动力用煤结渣倾向的判断[J]. 热力发电, 2004, 33(5): 68-70, 83.
|
|
LOU Yihong. Judgement of slagging tendency for coal used in power industry[J]. Thermal Power Generation, 2004, 33(5): 68-70, 83.
|
23 |
岑可法,樊建人,池作和,等. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京: 科学出版社, 1994: 109.
|
|
CEN Kefa, FAN Jianren, CHI Zuohe, et al. Principle and calculation of ash sagging wear and corrosion prevention in boilers and heat exchangers[M]. Beijing: Science Press, 1994:109.
|
24 |
ZHANG Q, LIU H F, QIAN Y P, et al. The influence of phosphorus on ash fusion temperature of sludge and coal[J]. Fuel Processing Technology, 2013, 110: 218-226.
|
25 |
HE Y, ZHU J J, LI B, et al. In-situ measurement of sodium and potassium release during oxy-fuel combustion of lignite using laser-induced breakdown spectroscopy: effects of O2 and CO2 concentration[J]. Energy & Fuels, 2013, 27(2): 1123-1130.
|
26 |
魏砾宏, 梁法光, 房凡, 等. 磷对泥/煤混燃灰熔融特性的影响及矿物相演变规律[J]. 燃料化学学报, 2019, 47(2): 129-137.
|
|
WEI Lihong, LIANG Faguang, FANG Fan, et al. Effect of phosphorus on ash fusion characteristics and mineral transformation during co-combustion of sewage sludge and coal[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 129-137.
|