化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3679-3692.DOI: 10.16085/j.issn.1000-6613.2020-1657
收稿日期:
2020-08-19
修回日期:
2020-11-16
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
李思
作者简介:
范开峰(1987—),男,博士,副教授,研究方向为原油管道蜡沉积机理及防治技术。E-mail:基金资助:
FAN Kaifeng1,2(), LI Si1,2(), HUANG Qiyu3, WAN Yufei4
Received:
2020-08-19
Revised:
2020-11-16
Online:
2021-07-06
Published:
2021-07-19
Contact:
LI Si
摘要:
蜡沉积物性质对原油管道清管方案的制定有重要影响,是原油流动保障领域的研究热点之一。本文回顾了近年来关于管道蜡沉积物径向特性的研究成果,对当前实验研究手段和方法进行了系统的对比分析;从蜡沉积物组成、析蜡特性、宏观形态与微观结构、力学特性四个方面深入阐述了对管道蜡沉积物径向性质的认识与结论,分析了其内在影响因素和作用机理;评述了蜡分子扩散系数及径向含蜡量分布预测模型的理论基础和存在缺陷;提出了未来的研究方向:加快研发更加精确的机械取样装置,深入研究沉积物微观结构特性对宏观流变性的影响机理并建立二者之间的定量关系,建立考虑多孔网状结构中蜡分子扩散动力学的蜡沉积物径向性质预测模型。
中图分类号:
范开峰, 李思, 黄启玉, 万宇飞. 原油管道蜡沉积物径向性质研究进展[J]. 化工进展, 2021, 40(7): 3679-3692.
FAN Kaifeng, LI Si, HUANG Qiyu, WAN Yufei. Research progress on radial properties of wax deposits in crude oil pipelines[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3679-3692.
方法 | 沉积物呈现位置 | 优点 | 缺点 |
---|---|---|---|
冷指实验法 | 冷指表面 | 装置结构简单,操作方便,便于观察沉积物外观 形态与取样 | 以静态实验为主,即使加装搅拌桨也与实际管道流动工况相差较大;无法进行复杂工况蜡沉积实验,如分层流等 |
环道实验法 | 管道内壁 | 可以模拟现场管道的流动工况,包括单相原油、多相分层流蜡沉积实验等,沉积物更能反映真实管道沉积物性质 | 装置结构较复杂,操作步骤多,系统带压运行,容易出现漏油现象;沉积物附着在管道内壁,可以取到的样品数量和精度受限 |
现场割管法 | 管道内壁 | 所得沉积物来源于现场管道,研究结论可真实反映实际管道蜡沉积物特性 | 现场开挖和割管作业影响正常生产、成本高、机会少,除特定需求外,通常是可遇不可求 |
表1 沉积物获取方法优缺点
方法 | 沉积物呈现位置 | 优点 | 缺点 |
---|---|---|---|
冷指实验法 | 冷指表面 | 装置结构简单,操作方便,便于观察沉积物外观 形态与取样 | 以静态实验为主,即使加装搅拌桨也与实际管道流动工况相差较大;无法进行复杂工况蜡沉积实验,如分层流等 |
环道实验法 | 管道内壁 | 可以模拟现场管道的流动工况,包括单相原油、多相分层流蜡沉积实验等,沉积物更能反映真实管道沉积物性质 | 装置结构较复杂,操作步骤多,系统带压运行,容易出现漏油现象;沉积物附着在管道内壁,可以取到的样品数量和精度受限 |
现场割管法 | 管道内壁 | 所得沉积物来源于现场管道,研究结论可真实反映实际管道蜡沉积物特性 | 现场开挖和割管作业影响正常生产、成本高、机会少,除特定需求外,通常是可遇不可求 |
方法 | 优点 | 缺点 | 研究者 |
---|---|---|---|
机械取样法 | 采用铁片、刀片等工具对沉积物取样,对沉积物原始结构的扰动小;所得沉积物可以真实反应径向变化特性 | 对实验人员的操作熟练度和精准度要求高;当沉积物厚度较薄时,所得沉积物样品的量受限并且分层较少,通常只能刮取内外两层 | 范开峰等[ |
加热取样法 | 沉积物取样受温度控制,可以精确加载温度;可根据采用的温度区间分更多层位进行取样;每一层位所得样品数量相对较多 | 加热过程对沉积物原始结构扰动大,测试结果与真实情况有一定偏差 | 范开峰等[ |
表2 径向沉积物区分方法对比
方法 | 优点 | 缺点 | 研究者 |
---|---|---|---|
机械取样法 | 采用铁片、刀片等工具对沉积物取样,对沉积物原始结构的扰动小;所得沉积物可以真实反应径向变化特性 | 对实验人员的操作熟练度和精准度要求高;当沉积物厚度较薄时,所得沉积物样品的量受限并且分层较少,通常只能刮取内外两层 | 范开峰等[ |
加热取样法 | 沉积物取样受温度控制,可以精确加载温度;可根据采用的温度区间分更多层位进行取样;每一层位所得样品数量相对较多 | 加热过程对沉积物原始结构扰动大,测试结果与真实情况有一定偏差 | 范开峰等[ |
取样方法 | 管道 | 外层(靠近油流) | 内层(靠近管壁) | 研究者 |
---|---|---|---|---|
机械取样法 | 铁大线 任京线 | 2.6 2.9 | 2.2 2.4 | 李苗[ |
机械取样法 | 任京线(房山—新城) 铁大线 | 1.66 1.77 | 1.62 1.71 | Bai等[ |
表3 管壁不同径向位置沉积物的蜡晶长径比
取样方法 | 管道 | 外层(靠近油流) | 内层(靠近管壁) | 研究者 |
---|---|---|---|---|
机械取样法 | 铁大线 任京线 | 2.6 2.9 | 2.2 2.4 | 李苗[ |
机械取样法 | 任京线(房山—新城) 铁大线 | 1.66 1.77 | 1.62 1.71 | Bai等[ |
模型 | 精确性 | 优缺点 | 适用性 |
---|---|---|---|
Panacharoensawad模型 | 与实验数据吻合较好,未分析具体误差值 | 未考虑沉积物径向含蜡量差异,模型只能预测沉积物平均含蜡量 | 单相原油及含水率35%以内原油 |
Fogler课题组模型 | 与实验数据吻合很好,未给出具体误差值 | 预测结果与实际原油管道中的沉积物含蜡量分布不符 | 适用于层流流型及单相原油 |
范开峰模型 | 预测值与实验值相比,平均相对误差绝对值为10.48% | 预测精度较高;径向含蜡量预测结果与实际管道含蜡量分布规律相同 | 适用于层流流型,可预测单相原油及含水率不高于30%的油包水乳状液管输工况 |
表4 沉积物径向含蜡量分布预测模型对比
模型 | 精确性 | 优缺点 | 适用性 |
---|---|---|---|
Panacharoensawad模型 | 与实验数据吻合较好,未分析具体误差值 | 未考虑沉积物径向含蜡量差异,模型只能预测沉积物平均含蜡量 | 单相原油及含水率35%以内原油 |
Fogler课题组模型 | 与实验数据吻合很好,未给出具体误差值 | 预测结果与实际原油管道中的沉积物含蜡量分布不符 | 适用于层流流型及单相原油 |
范开峰模型 | 预测值与实验值相比,平均相对误差绝对值为10.48% | 预测精度较高;径向含蜡量预测结果与实际管道含蜡量分布规律相同 | 适用于层流流型,可预测单相原油及含水率不高于30%的油包水乳状液管输工况 |
1 | 黄启玉,毕权,李男. 油水两相流蜡沉积研究进展[J]. 化工进展, 2016, 35(S1): 69-74. |
HUANG Q Y, BI Q, LI N. Research progress of wax deposition in oil-water two-phase flow[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 69-74. | |
2 | 娄博文, 王鹏宇, 徐硕, 等. 单相输油管道蜡沉积研究进展[J]. 油气储运, 2018, 37(8): 857-864. |
LOU B W, WANG P Y, XU S, et al. Research progress of wax deposition in single-phase oil pipeline[J]. Oil & Gas Storage and Transportation, 2018, 37(8): 857-864. | |
3 | 叶兵, 喻西崇, 彭伟, 等. 海洋深水海底含蜡原油管道中蜡沉积预测和清管模拟[J]. 中国石油大学学报(自然科学版), 2019, 43(3): 159-166. |
YE B, YU X C, PENG W, et al. Wax deposition prediction and pigging simulation in waxy crude oil tieback deepwater pipelines[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(3): 159-166. | |
4 | FAN K F, HUANG Q Y, LI S, et al. The wax deposition rate of water-in-crude oil emulsions based on the laboratory flow loop experiment[J]. Journal of Dispersion Science and Technology, 2017, 38(1): 8-18. |
5 | 王文达. 原油管道清管过程中蜡层剥离规律研究[D]. 北京: 中国石油大学(北京), 2016. |
WANG W D. Study on wax layer removal and transport behaviors during crude oil pipeline pigging[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
6 | 李卫东. 原油管道清管蜡层剥离机理研究[D]. 北京: 中国石油大学(北京), 2019. |
LI W D. Study on wax removal mechanism in crude oil pipeline pigging[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
7 | JAPPER-JAAFAR A, BHASKORO P T, SEAN L L, et al. Yield stress measurement of gelled waxy crude oil: gap size requirement[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 218: 71-82. |
8 | WANG W D, HUANG Q Y, WANG C H, et al. Effect of operating conditions on wax deposition in a laboratory flow loop characterized with DSC technique[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 471-485. |
9 | MAHIR L, VILAS BÔAS FÁVERO C, KETJUNTIWA T, et al. Mechanism of wax deposition on cold surfaces: gelation and deposit aging[J]. Energy & Fuels, 2019, 33(5): 3776-3786. |
10 | LEPORINI M, TERENZI A, MARCHETTI B, et al. Experiences in numerical simulation of wax deposition in oil and multiphase pipelines: theory versus reality[J]. Journal of Petroleum Science and Engineering, 2019, 174: 997-1008. |
11 | 范开峰. 含蜡原油及油包水乳状液蜡沉积规律研究[D]. 北京: 中国石油大学(北京), 2017. |
FAN K F. Wax deposition of waxy crude oil and water-in-oil emulsion[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
12 | LI R B, HUANG Q Y, HUO F Y, et al. Effect of shear on the thickness of wax deposit under laminar flow regime[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106212. |
13 | 李苗. 原油管道清管器运动规律研究[D]. 北京: 中国石油大学(北京), 2018. |
LI M. Study on the pig motion in the waxy crude oil pipeline[D]. Beijing: China University of Petroleum (Beijing), 2018. | |
14 | SINGH P, VENKATESAN R, FOGLER H S, et al. Morphological evolution of thick wax deposits during aging[J]. AIChE Journal, 2001, 47(1): 6-18. |
15 | KANG P S, HWANG J Y, LIM J S. Flow rate effect on wax deposition behavior in single-phase laminar flow[J]. Journal of Energy Resources Technology, 2019, 141(3): 032903. |
16 | AKINYEMI O P, UDONNE J D, OYEDEKO K F. Study of effects of blend of plant seed oils on wax deposition tendencies of Nigerian waxy crude oil[J]. Journal of Petroleum Science and Engineering, 2018, 161: 551-558. |
17 | LEI Y, HAN S P, ZHANG J J. Effect of the dispersion degree of asphaltene on wax deposition in crude oil under static conditions[J]. Fuel Processing Technology, 2016, 146: 20-28. |
18 | FAN K F, HUANG Q Y, LI S, et al. Wax deposition study in a cold-finger system with model oil[C]// SPE/IATMI Asia Pacific Oil & Gas Conference & Exhibition, 2015. |
19 | LU Y D, HUANG Z Y, HOFFMANN R, et al. Counterintuitive effects of the oil flow rate on wax deposition[J]. Energy & Fuels, 2012, 26(7): 4091-4097. |
20 | PANACHAROENSAWAD E, SARICA C. Experimental study of single-phase and two-phase water-in-crude-oil dispersed flow wax deposition in a mini pilot-scale flow loop[J]. Energy & Fuels, 2013, 27(9): 5036-5053. |
21 | SOEDARMO A A, DARABOINA N, SARICA C. Validation of wax deposition models with recent laboratory scale flow loop experimental data[J]. Journal of Petroleum Science and Engineering, 2017, 149: 351-366. |
22 | CHI Y D, DARABOINA N, SARICA C. Effect of the flow field on the wax deposition and performance of wax inhibitors: cold finger and flow loop testing[J]. Energy & Fuels, 2017, 31(5): 4915-4924. |
23 | LI S, HUANG Q Y, WANG W D, et al. Experimental investigation of wax deposition at different deposit locations through a detachable flow loop apparatus[C]// Proceedings of 2014 10th International Pipeline Conference, September 29-October 3, 2014, Calgary, Alberta, Canada. 2014. |
24 | 王鹏宇, 姚海元, 宫敬, 等. 油包水型乳状液蜡沉积冷指实验研究[J]. 中国海上油气, 2014, 26(1): 114-118. |
WANG P Y, YAO H Y, GONG J, et al. Study on the cold finger experiment of wax deposition of water-in-oil emulsions[J]. China Offshore Oil and Gas, 2014, 26(1): 114-118. | |
25 | 全青, 吴海浩, 高歌, 等. 不同温度下单相含蜡原油的蜡沉积规律[J]. 油气储运, 2014, 33(8): 852-856. |
QUAN Q, WU H H, GAO G, et al. Wax deposition of single-phase waxy crude oil at different temperatures[J]. Oil & Gas Storage and Transportation, 2014, 33(8): 852-856. | |
26 | COUTO G H, CHEN H, DELLE-CASE E, et al. An investigation of two-phase oil/water paraffin deposition[J]. SPE Production & Operations, 2008, 23(1):49-55. |
27 | CORRERA S, FASANO A, FUSI L, et al. Modelling wax diffusion in crude oils: the cold finger device[J]. Applied Mathematical Modelling, 2007, 31(10): 2286-2298. |
28 | YANG F, CAI J, CHENG L, et al. Development of asphaltenes-triggered two-layer waxy oil gel deposit under laminar flow: an experimental study[J]. Energy & Fuels, 2016, 30(11):9922-9932. |
29 | LI C X, CAI J, YANG F, et al. Effect of asphaltenes on the stratification phenomenon of wax-oil gel deposits formed in a new cylindrical Couette device[J]. Journal of Petroleum Science and Engineering, 2016, 140: 73-84. |
30 | LI C X, ZHU H R, YANG F, et al. Effect of asphaltene polarity on wax precipitation and deposition characteristics of waxy oils[J]. Energy & Fuels, 2019, 33(8): 7225-7233. |
31 | ZHU H R, LI C X, YANG F, et al. Effect of thermal treatment temperature on the flowability and wax deposition characteristics of Changqing waxy crude oil[J]. Energy & Fuels, 2018, 32(10): 10605-10615. |
32 | 杨飞, 刘宏业, 朱浩然, 等. 热处理温度对长庆原油蜡沉积特性的影响[J]. 石油学报(石油加工), 2019, 35(5): 892-898. |
YANG F, LIU H Y, ZHU H R, et al. Effect of thermal treatment temperature on wax deposition property of Changqing crude oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(5): 892-898. | |
33 | 李思. 油包水乳状液蜡分子扩散规律研究[D]. 北京: 中国石油大学(北京), 2016. |
LI S. Study on wax diffusion characteristics in water-in-oil emulsion[D]. Beijing: China University of Petroleum (Beijing), 2016. | |
34 | VALINEJAD R, SOLAIMANY NAZAR A R. An experimental design approach for investigating the effects of operating factors on the wax deposition in pipelines[J]. Fuel, 2013, 106: 843-850. |
35 | SINGH P, VENKATESAN R, FOGLER H S, et al. Formation and aging of incipient thin film wax-oil gels[J]. AIChE Journal, 2000, 46(5): 1059-1074. |
36 | 张宇. 多相流动体系中蜡沉积规律研究[D]. 北京: 中国石油大学(北京), 2011. |
ZHANG Y. Study on wax deposition in multiphase flow[D]. Beijing: China University of Petroleum (Beijing), 2011. | |
37 | 毕权, 黄启玉, 范开峰. 原油蜡沉积规律及沉积物性质的径向差异[J]. 油气储运, 2016, 35(9): 952-957. |
BI Q, HUANG Q Y, FAN K F. Wax deposit laws of crude oil and radial differences of sediment properties[J]. Oil & Gas Storage and Transportation, 2016, 35(9): 952-957. | |
38 | 张国忠, 王志方, 刘刚. 热油管道石蜡沉积层的力学特性研究[J]. 油气储运, 2010, 29(2): 107-109. |
ZHANG G Z, WANG Z F, LIU G. Research on mechanical characteristics of wax deposition in hot oil pipelines[J]. Oil & Gas Storage and Transportation, 2010, 29(2): 107-109. | |
39 | 黄俊. 西部管道结蜡和冲刷研究[D]. 北京: 中国石油大学(北京), 2011. |
HUANG J. Research on wax deposition and erosion of west crude oil pipeline[D]. Beijing: China University of Petroleum (Beijing), 2011. | |
40 | 白成玉. 原油管道清蜡若干基础问题研究[D]. 北京: 中国石油大学(北京), 2013. |
BAI C Y. Study on some fundamental issues of romoving wax deposit in crude oil pipelines[D]. Beijing: China University of Petroleum (Beijing), 2013. | |
41 | LI M, SUN M R, LU Y D, et al. Experimental study on the strength of original samples of wax deposits from pipelines in the field[J]. Energy & Fuels, 2017, 31(11): 11977-11986. |
42 | BAI C Y, ZHANG J J. Thermal, macroscopic, and microscopic characteristics of wax deposits in field pipelines[J]. Energy & Fuels, 2013, 27(2): 752-759. |
43 | 范开峰, 黄启玉, 毕权, 等. 管输含蜡原油沉积物的性质[J]. 油气储运, 2016, 35(9): 946-951. |
FAN K F, HUANG Q Y, BI Q, et al. Properties of deposits in waxy crude oil pipeline[J]. Oil & Gas Storage and Transportation, 2016, 35(9): 946-951. | |
44 | VENKATESAN R, NAGARAJAN N R, PASO K, et al. The strength of paraffin gels formed under static and flow conditions[J]. Chemical Engineering Science, 2005, 60(13): 3587-3598. |
45 | SINGH P, YOUYEN A, FOGLER H S. Existence of a critical carbon number in the aging of a wax-oil gel[J]. AIChE Journal, 2001, 47(9): 2111-2124. |
46 | ARUMUGAM S, KASUMU A S, MEHROTRA A K. Modeling of solids deposition from “waxy” mixtures in “hot flow” and “cold flow” regimes in a pipeline operating under turbulent flow[J]. Energy & Fuels, 2013, 27(11): 6477-6490. |
47 | HUANG Z Y, LEE H S, SENRA M, et al. A fundamental model of wax deposition in subsea oil pipelines[J]. AIChE Journal, 2011, 57(11): 2955-2964. |
48 | PASO K, FOGLER H S. Influence of n-paraffin composition on the aging of wax-oil gel deposits[J]. AIChE Journal, 2003, 49(12): 3241-3252. |
49 | ZHENG S, ZHANG F, HUANG Z Y, et al. Effects of operating conditions on wax deposit carbon number distribution: theory and experiment[J]. Energy & Fuels, 2013, 27(12): 7379-7388. |
50 | FAN K F, HUANG Q Y, LI S. Determination of the optimizing operating procedure for DSC test of wax-solvent samples with narrow and sharp wax peak and error analysis of data reliability[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1713-1725. |
51 | 李思,黄启玉,范开峰. 石油流体析蜡特性检测技术[J]. 石油学报(石油加工), 2016, 32(6): 1287-1296. |
LI S, HUANG Q Y, FAN K F. Review of measurement techniques for wax precipitation characteristics of petroleum fluids[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(6): 1287-1296. | |
52 | 李思, 范开峰, 黄启玉. 利用NIRS和RI技术测试石油流体析蜡温度新方法[J]. 化工学报, 2020, 71(7): 3333-3344. |
LI S, FAN K F, HUANG Q Y. New measurement methods for wax appearance temperature of petroleum fluids using NIRS and RI techniques[J]. CIESC Journal, 2020, 71(7): 3333-3344. | |
53 | COTO B, MARTOS C, ESPADA J J, et al. Study of new methods to obtain the n-paraffin distribution of crude oils and its application to flow assurance[J]. Energy & Fuels, 2011, 25(2): 487-492. |
54 | LEE H S. Computational and rheological study of wax deposition and gelation in subsea pipelines[D]. Ann Arbor: the University of Michigan, 2008. |
55 | OH K, DEO M. Characteristics of wax gel formation in the presence of asphaltenes[J]. Energy & Fuels, 2009, 23(3): 1289-1293. |
56 | 高鹏. 含蜡原油流变性与蜡晶形态、结构及原油组成间关系研究[D]. 北京: 中国石油大学(北京), 2006. |
GAO P. Study on relation of waxy crude rheology to its composition and wax crystal morphology and structure[D]. Beijing: China University of Petroleum (Beijing), 2006. | |
57 | COUTINHO J A P, LOPES DA SILVA J A, FERREIRA A, et al. Evidence for the aging of wax deposits in crude oils by Ostwald ripening [J]. Petroleum Science and Technology, 2003, 21(3/4): 381-391. |
58 | MASOUDI S, SEFTI M V, JAFARI H, et al. The hardening process and morphology of a wax deposit in a pipe flow[J]. Petroleum Science and Technology, 2010, 28(15): 1598-1610. |
59 | VENKATESAN R. The deposition and rheology of organic gels[D]. Ann Arbor: University of Michigan, 2004. |
60 | 任翌劼. 不同强度蜡沉积物的清管力学行为研究[D]. 北京: 中国石油大学(北京), 2017. |
REN Y J. Study on wax removal mechanical behaviors of wax deposit sample with different structural strength[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
61 | 董雪. 原油管道蜡沉积物抗剪切强度研究[D]. 北京: 中国石油大学(北京), 2019. |
DONG X. Study on the shear strength of crude oil pipeline wax deposit[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
62 | CHANG P, WILKE C R. Some measurements of diffusion in liquids[J]. The Journal of Physical Chemistry, 1955, 59(7): 592-596. |
63 | HAYDUK W, MINHAS B S. Correlations for prediction of molecular diffusivities in liquids[J]. The Canadian Journal of Chemical Engineering, 1982, 60(2): 295-299. |
64 | CUSSLER E L, HUGHES S E, WARD W J, et al. Barrier membranes[J]. Journal of Membrane Science, 1988, 38(2): 161-174. |
65 | LAPE N K, YANG C F, CUSSLER E L. Flake-filled reactive membranes[J]. Journal of Membrane Science, 2002, 209(1): 271-282. |
66 | LAPE N K, NUXOLL E E, CUSSLER E L. Polydisperse flakes in barrier films[J]. Journal of Membrane Science, 2004, 236(1/2): 29-37. |
67 | ZHENG S, FOGLER H S. Fundamental investigation of wax diffusion characteristics in water-in-oil emulsion[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4420-4428. |
68 | 陈普敏, 韩善鹏, 李鸿英, 等. 采用泰勒分散法测量蜡分子扩散系数[J]. 化工学报, 2014, 65(2): 605-612. |
CHEN P M, HAN S P, LI H Y, et al. Measurement of diffusion coefficients of paraffin molecules using Taylor dispersion method[J]. CIESC Journal, 2014, 65(2): 605-612. | |
69 | 韩善鹏, 刘丽云, 陈普敏. 管道蜡沉积模型中扩散系数的研究[J]. 当代化工, 2014, 43(10): 2178-2181. |
HAN S P, LIU L Y, CHEN P M. Research on the diffusion coefficient in the model of pipeline wax deposition[J]. Contemporary Chemical Industry, 2014, 43(10): 2178-2181. | |
70 | HUANG Z Y. Application of the fundamentals of heat and mass transfer to the investigation of wax deposition in subsea pipelines[D]. Ann Arbor: University of Michigan, 2011. |
71 | DUAN J M, LIU H S, GUAN J F, et al. Wax deposition modeling of oil/gas stratified smooth pipe flow[J]. AIChE Journal, 2016, 62(7): 2550-2562. |
72 | HERNANDEZ O. Investigation of single-phase paraffin deposition characteristics[D]. Tulsa: The University of Tulsa, 2002. |
73 | PANACHAROENSAWAD E. Wax deposition under two-phase oil-water flowing conditions[D]. Tulsa: The University of Tulsa, 2012. |
[1] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[4] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[5] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[6] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
[7] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[8] | 索寒生, 贾梦达, 宋光, 刘东庆. 数字孪生技术助力石化智能工厂[J]. 化工进展, 2023, 42(7): 3365-3373. |
[9] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[10] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[11] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[12] | 陆诗建, 张媛媛, 吴文华, 杨菲, 刘玲, 康国俊, 李清方, 陈宏福, 王宁, 王风, 张娟娟. 百万吨级CO2捕集项目亚硝胺污染物扩散健康风险评估[J]. 化工进展, 2023, 42(6): 3209-3216. |
[13] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[14] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
[15] | 戴行, 高瑞雪, 李奕国, 朱锦, 王静刚. 高玻璃化转变温度抗冲击透明聚酯的研究进展[J]. 化工进展, 2023, 42(5): 2555-2565. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |