化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1456-1468.DOI: 10.16085/j.issn.1000-6613.2020-0770
郭其景1(), 詹伟泉1, 王清淼2, 贾菲菲1(), 宋少先1
收稿日期:
2020-05-09
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
贾菲菲
作者简介:
郭其景(1996—),女,硕士研究生,研究方向为太阳能海水淡化。E-mail:基金资助:
GUO Qijing1(), ZHAN Weiquan1, WANG Qingmiao2, JIA Feifei1(), SONG Shaoxian1
Received:
2020-05-09
Online:
2021-03-05
Published:
2021-03-17
Contact:
JIA Feifei
摘要:
海水淡化是从丰富的海水资源中提取清洁淡水的技术,是解决淡水资源短缺的重要途径。传统的海水淡化技术在实际应用中已经暴露出高成本、高能耗和低效率等缺点,因此开发海水淡化新兴技术及材料成为研究重点。二硫化钼(MoS2)是典型层状过渡金属硫化物,因其化学稳定、吸光能力优异等优点,在海水淡化领域具有极大的应用前景。作为一种高效环保的海水淡化材料,MoS2及其复合材料在改善传统脱盐工艺和发展新兴脱盐技术中已得到广泛研究。本文主要论述和分析MoS2基材料在电容去离子、膜脱盐及太阳能脱盐等海水淡化应用中的研究进展以及在工业化应用中面临的挑战,并展望其今后在脱盐领域的发展方向。
中图分类号:
郭其景, 詹伟泉, 王清淼, 贾菲菲, 宋少先. 二硫化钼作为海水淡化材料的研究进展[J]. 化工进展, 2021, 40(3): 1456-1468.
GUO Qijing, ZHAN Weiquan, WANG Qingmiao, JIA Feifei, SONG Shaoxian. Research progress of molybdenum disulfide as a material for seawater desalination[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1456-1468.
材料 | NaCl溶液浓度 | 应用电压 /V | 最大电吸附容量 /mg·g-1 | 离子质量去除能力 /mg·g-1 | 离子体积去除能力 /mg·cm-3 | 比电容/F·g-1 | 参考 文献 |
---|---|---|---|---|---|---|---|
MoS2 | 100mg·L-1 | 0.8 | 12.8 | 8.8 | 74.22(5mV·s-1) | [ | |
MoS2 | 200mg·L-1 | 1.2 | 10.97 | 9.79 | 75(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/PDA | 200mg·L-1 | 1.2 | 16.94 | 14.8 | 99.9(1mol·L-1 NaCl,10mV·s-1) | [ | |
热处理MoS2 | 100mg·L-1 | 0.8 | 35 | 24.6 | 221.35(5mV·s-1) | ||
ce-MoS2纳米片 | 400mmol·L-1 | 1.2 | 8.81 | 16.51 | 109.7(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/rGO | 200mg·L-1 | 1.0 | 19.06 | 16.82 | 198.6(1A·g-1的电流密度下) | [ | |
MoS2/碳纳米管 | 5mmol·L-1 25mmol·L-1 100mmol·L-1 500mmol·L-1 | 0.8 | 10 13 18 25 | 40 65 90 125 | 正电极极化200 负电极极化210 (1mol·L-1 NaCl,5mV·s-1) | [ | |
MoS2/石墨烯 | 500mg·L-1 | 1.2 | 19.4 | 14.3 | 146.1(0.5mol·L-1 NaCl,5mV·s-1) 47.9(0.5mol·L-1 NaCl,50mV·s-1) | [ | |
MoS2/g-C3N4电极 | 250mg·L-1 | 1.6 | 24.5 | 24.16 | 118.3F·g-1(1A·g-1) 61.7F·g-1(10A·g-1) | [ |
表1 MoS2基电极材料的脱盐性能
材料 | NaCl溶液浓度 | 应用电压 /V | 最大电吸附容量 /mg·g-1 | 离子质量去除能力 /mg·g-1 | 离子体积去除能力 /mg·cm-3 | 比电容/F·g-1 | 参考 文献 |
---|---|---|---|---|---|---|---|
MoS2 | 100mg·L-1 | 0.8 | 12.8 | 8.8 | 74.22(5mV·s-1) | [ | |
MoS2 | 200mg·L-1 | 1.2 | 10.97 | 9.79 | 75(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/PDA | 200mg·L-1 | 1.2 | 16.94 | 14.8 | 99.9(1mol·L-1 NaCl,10mV·s-1) | [ | |
热处理MoS2 | 100mg·L-1 | 0.8 | 35 | 24.6 | 221.35(5mV·s-1) | ||
ce-MoS2纳米片 | 400mmol·L-1 | 1.2 | 8.81 | 16.51 | 109.7(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/rGO | 200mg·L-1 | 1.0 | 19.06 | 16.82 | 198.6(1A·g-1的电流密度下) | [ | |
MoS2/碳纳米管 | 5mmol·L-1 25mmol·L-1 100mmol·L-1 500mmol·L-1 | 0.8 | 10 13 18 25 | 40 65 90 125 | 正电极极化200 负电极极化210 (1mol·L-1 NaCl,5mV·s-1) | [ | |
MoS2/石墨烯 | 500mg·L-1 | 1.2 | 19.4 | 14.3 | 146.1(0.5mol·L-1 NaCl,5mV·s-1) 47.9(0.5mol·L-1 NaCl,50mV·s-1) | [ | |
MoS2/g-C3N4电极 | 250mg·L-1 | 1.6 | 24.5 | 24.16 | 118.3F·g-1(1A·g-1) 61.7F·g-1(10A·g-1) | [ |
分类 | 材料形态 | 光热材料 | 光照强度 /kW·m-2 | 蒸发速率 /kg·m-2·h-1 | 蒸发效率 /% | 光吸收率/% | 参考 文献 |
---|---|---|---|---|---|---|---|
界面蒸发系统 | 光热膜 | SWNT/MoS2复合膜 | 5 | 大气6.6 真空15.6 | 91.5 | 82 | [ |
MoS2/GF膜 | 1 | 1.85 | 94 | [ | |||
双层结构 | MoS2/棉布基质+EPS(PMoS2-CC) | 1 5 | 1.3 7.03 | 80.1 90.3 | >90(200~2000nm) >80(2000~2500nm) | [ | |
MoS2/海绵双层结构 | 1 1.5~2.5 | 1.204 1.9~3.36 | 86.2 >90 | [ | |||
MoS2/C@PU+EPS | 1 | 1.95 | 98(500~2000nm) | [ | |||
2H-MoS2凹膜+EPS | 1 3 | 1.68±0.08 4.5 | 83.8±0.8 91.5±1.1 | [ | |||
MoS2 /无尘纸/EPE | 1 2 5 | 1.27 1.95 5.90 | 80 61 67 | [ | |||
气凝胶 | MoS2气凝胶 | 1 1.5 2 3 | 1.36 2.16 2.97 4.56 | 85.4 90.1 93.0 95.3 | 95(200~2500nm) | [ | |
ce-MoS2 /BNC双层气凝胶 | 0.76 5.35 | 0.81 6.15 | 75.7 81.4 | [ | |||
体积蒸发系统 | 磁流体 | 磁性MoS2纳米片 (1.0g·L-1) | 1 1.5 2 2.5 | 1 1.69 2.39 3.16 | 62.46 70.77 75.00 79.20 | 96(200~2500nm) | [ |
表2 MoS2基太阳能蒸发器的水蒸发性能
分类 | 材料形态 | 光热材料 | 光照强度 /kW·m-2 | 蒸发速率 /kg·m-2·h-1 | 蒸发效率 /% | 光吸收率/% | 参考 文献 |
---|---|---|---|---|---|---|---|
界面蒸发系统 | 光热膜 | SWNT/MoS2复合膜 | 5 | 大气6.6 真空15.6 | 91.5 | 82 | [ |
MoS2/GF膜 | 1 | 1.85 | 94 | [ | |||
双层结构 | MoS2/棉布基质+EPS(PMoS2-CC) | 1 5 | 1.3 7.03 | 80.1 90.3 | >90(200~2000nm) >80(2000~2500nm) | [ | |
MoS2/海绵双层结构 | 1 1.5~2.5 | 1.204 1.9~3.36 | 86.2 >90 | [ | |||
MoS2/C@PU+EPS | 1 | 1.95 | 98(500~2000nm) | [ | |||
2H-MoS2凹膜+EPS | 1 3 | 1.68±0.08 4.5 | 83.8±0.8 91.5±1.1 | [ | |||
MoS2 /无尘纸/EPE | 1 2 5 | 1.27 1.95 5.90 | 80 61 67 | [ | |||
气凝胶 | MoS2气凝胶 | 1 1.5 2 3 | 1.36 2.16 2.97 4.56 | 85.4 90.1 93.0 95.3 | 95(200~2500nm) | [ | |
ce-MoS2 /BNC双层气凝胶 | 0.76 5.35 | 0.81 6.15 | 75.7 81.4 | [ | |||
体积蒸发系统 | 磁流体 | 磁性MoS2纳米片 (1.0g·L-1) | 1 1.5 2 2.5 | 1 1.69 2.39 3.16 | 62.46 70.77 75.00 79.20 | 96(200~2500nm) | [ |
1 | 彭珂珊. 21世纪中国水资源危机[J]. 水利水电科技进展, 2000, 20(5): 13-16. |
PENG Keshan. China water resource crisis in the 21th century[J]. Advances in Science and Technology of Water Resources, 2000, 20(5): 13-16. | |
2 | Gary AMY, GHAFFOUR Noreddine, LI Zhenyu, et al. Membrane-based seawater desalination: present and future prospects[J]. Desalination, 2016, 401: 16-21. |
3 | GAMBLER Adrian, BADREDDIN Essameddin. Dynamic modelling of MSF plants for automatic control and simulation purposes: a survey[J]. Desalination, 2004, 166: 191-204. |
4 | SAYYAADI Hoseyn, SAFFARI Arash. Thermoeconomic optimization of multi effect distillation desalination systems[J]. Applied Energy, 2010, 87(4): 1122-1133. |
5 | ZHOU Jianguo, SUN Zhenlong, CHEN Mingqi, et al. Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties[J]. Advanced Functional Materials, 2016, 26(29): 5368-5375. |
6 | LIU Zhejun, SONG Haomin, JI Dengxin, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenges, 2017, 1(2): 1600003. |
7 | YANG Yang, ZHAO Ruiqi, ZHANG Tengfei, et al. Graphene-based standalone solar energy converter for water desalination and purification[J]. ACS Nano, 2018, 12(1): 829-835. |
8 | HU Xiaozhen, XU Weichao, ZHOU Lin, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials, 2017, 29(5): 1604031. |
9 | Donghan SEO, PINEDA Shafique, Yunchul WOO, et al. Anti-fouling graphene-based membranes for effective water desalination[J]. Nature Communications, 2018, 9(1): 683. |
10 | DONG Yingchao, MA Lining, TANG Chuyang, et al. Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes[J]. Nano Letters, 2018, 18(9): 5514-5521. |
11 | SHAO Yue, JIANG Zhiping, ZHANG Yunjing, et al. All-poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination[J]. ACS Nano, 2018, 12(11): 11704-11710. |
12 | Che Ning YEH, RAIDONGIA Kalyan, SHAO Jiaojing, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry, 2015, 7(2): 166-170. |
13 | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
14 | YANG Lei, ZHONG Ding, ZHANG Jingyu, et al. Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution[J]. ACS Nano, 2014, 8(7): 6979-6985. |
15 | CAO Linyou, YU Yifei, HUANG Shengyang, et al. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution[J]. Nano Letters, 2014, 14(2): 553-558. |
16 | WU Jinzhu, LI Beibei, FENG Yaxiu, et al. Silicon quantum dot-assisted synthesis of MoS2/rGO sandwich structures with excellent supercapacitive performance[J]. New Journal of Chemistry, 2019, 43(22): 8660-8668. |
17 | YANG M H, JEONG J M, HUH Y S, et al. High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites[J]. Composites Science & Technology, 2015, 121: 123-128. |
18 | PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with mono layer MoS2[J]. Nano Letters, 2013, 13(2): 668-673. |
19 | SARKAR Depanjan, MONDAL Biswajit, Anirban SOM, et al. Holey MoS2 nanosheets with photocatalytic metal rich edges by ambient electrospray deposition for solar water disinfection[J]. Global Challenges, 2018, 2(12): 1800052. |
20 | ZHAN Weiquan, YUAN Yuan, YANG Bingqiao, et al. Construction of MoS2 nano-heterojunction via ZnS doping for enhancing in-situ photocatalytic reduction of gold thiosulfate complex[J]. Chemical Engineering Journal, 2020, 394: 124866-124875. |
21 | YIN Huajie, ZHAO Shenlong, WAN Jiawei, et al. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water[J]. Advanced Materials, 2013, 25(43): 6270-6276. |
22 | ZHANG Jing, FANG Jianhui, HAN Jinlong, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Materials for Energy and Sustainability, 2018, 6(31): 15245-15252. |
23 | TANG Wangwang, KOVALSKY Peter, CAO BAichuan, et al. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization[J]. Water Research, 2016, 99: 112-121. |
24 | ZHANG Changyong, HE Di, MA Jinxing, et al. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: a review[J]. Water Research, 2018, 128: 314-330. |
25 | HEMMATIFAR Ali, PALKO James W, STADERMANN Michael, et al. Energy breakdown in capacitive deionization[J]. Water Research, 2016, 104: 303-311. |
26 | ACERCE Muharrem, VOIRY Damine, CHHOWALLA Manishi. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318. |
27 | JIA Feifei, SUN Kaige, YANG Bingqiao, et al. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water[J]. Desalination, 2018, 446: 21-30. |
28 | WANG Qingmiao, JIA Feifei, SONG Shaoxian, et al. Hydrophilic MoS2/polydopamine (PDA) nanocomposites as the electrode for enhanced capacitive deionization[J]. Separation and Purification Technology, 2020, 236: 116298-116306. |
29 | XING Fei, LI Tao, LI Junye, et al. Chemically exfoliated MoS2 for capacitive deionization of saline water[J]. Nano Energy, 2017, 31: 590-595. |
30 | HUANG Kejing, WANG Lan, LIU Yujie, et al. Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14027-14034. |
31 | DAVID Lamuel, BHANDAVAT Romil, SINGH Gurpreet. MoS2/graphene composite paper for sodium-ion battery electrodese[J]. ACS Nano, 2014, 8(2): 1759-1770. |
32 | PENG Weijun, WANG Wei, HAN Guihong, et al. Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization[J]. Desalination, 2020, 473: 114191. |
33 | SRIMUK Pattarachai, Juhan LEE, FLEISCHMANN Simon, et al. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide[J]. Journal of Materials Chemistry A, 2017, 5(30): 15640-15649. |
34 | HAN Jinlong, YAN Tingting, SHEN Junjie, et al. Capacitive deionization of saline water by using MoS2-graphene hybrid electrodes with high volumetric adsorption capacity[J]. Environmental Science & Technology, 2019, 53(21): 12668-12676. |
35 | TIAN Shichao, ZHANG Xihui, ZHANG Zhenghua. Capacitive deionization with MoS2/g-C3N4 electrodes[J]. Desalination, 2020, 479: 114348. |
36 | WANG Zhongying, MI Baoxia. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technolog, 2017, 51(15): 8229-8244. |
37 | WANG Zhongying, TU Qingsong, ZHENG Sunxiang, et al. Understanding aqueous stability and filtration capability of moS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298. |
38 | HEIRANIAN Mohammad, FARIMANI Amir Barati, ALURU Narayana R. Water desalination with a single-layer MoS2 nanopore[J]. Scientific Reports, 2015, 6: 8616. |
39 | LARSON R E, CADOTTE J E, PETERSEN R J. The FT-30 seawater reverse osmosis membrane—element test results[J]. Desalination, 1981, 38: 473-483. |
40 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
41 | BERTOLAZZI Simone, BRIVIO Jacopo, Andras KIS. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. |
42 | LI Weifeng, YANG Yanmei, JEFFREY K, et al. Tunable, strain-controlled nanoporous MoS2 filter for water desalination[J]. ACS nano, 2016, 10(2): 1829-1835. |
43 | KOU Jianlong, YAO Jun, WU Lili, et al. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification[J]. Physical Chemistry Chemical Physics, 2016, 18(32): 22210-22216. |
44 | LIU Yunhui, BO Wang, LI Ersong, et al. The preparation of a strawberry-like super-hydrophilic surface on the molybdenum substrate[J]. Colloids & Surfaces A, 2012, 404: 52-55. |
45 | LI Hao, Taejun KO, Myeongsang LEE, et al. Experimental realization of few layer 2D MoS2 membranes of near atomic thickness for high efficiency water desalination[J]. Nano Letters, 2019, 19(8): 5194-5204. |
46 | ZHANG Chao, HU Dengfeng, XU Jingwei, et al. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity[J]. ACS Nano, 2018, 12(12): 12347-12356. |
47 | ABDIKHEIBARI Sara, LEI Weiwei, DUMEE Ludovic F, et al. Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance[J]. Applied Surface Science, 2019, 488: 565-577. |
48 | LI Yi, YANG Shishi, ZHANG Kaisong, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination, 2019, 454: 48-58. |
49 | HILAL N, AL-ZOUBI H, DARWISH N A, et al. A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170(3): 281-308. |
50 | MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
51 | ZHANG Hao, TAYMAZOV Dovletjan, LI Mengping, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. |
52 | HIRUNPIN Wisit, PRESTAT Eric, WORRALL Stephen D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090. |
53 | ZHAO Dieling, CHEN Shucheng, WANG Peng, et al. A dendrimer-based forward osmosis draw solute for seawater desalination[J]. Industrial Engineering Chemistry Research, 2014, 53(42): 16170-16175. |
54 | Nhu Ngoc BUI, MCCUTCHEON Jeffrey R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis[J]. Environmental Science & Technology, 2012, 47(3): 1761-1769. |
55 | LIU Caihong, Jongho LEE, MA Jun, et al. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environmental Science & Technology, 2017, 51(4): 2161-2169. |
56 | LI Mengna, SUN Xuefei, WANG Lin, et al. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties[J]. Desalination, 2018, 436: 107-113. |
57 | HEDAYATI Mehdi Keshavarz, ABDELAZIZ Moheb, ETRICH Christoph, et al. Broadband anti-reflective coating based on plasmonic nanocomposite[J]. Materials, 2016, 9(8): 636. |
58 | HEDAYATI Mehdi Keshavarz, ELBAHRI Mady. Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review[J]. Materials, 2016, 9(6): 497. |
59 | CAI Jinguang, QI Limin. Recent advances in antireflective surfaces based on nanostructure arrays[J]. Materials Horizons, 2015, 2(1): 37-53. |
60 | Youngshin JUN, WU Xuanhao, GHIM Deoukchen, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225. |
61 | WANG Peng. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environmental Science: Nano, 2018, 5(5): 1078-1089. |
62 | ZHU Liangliang, GAO Minmin, Connor Kang Nuo PEH. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons, 2018, 5(3): 323-343. |
63 | GAO Minmin, ZHU Liangliang, Connor Kangnuo PEH, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
64 | ZHANG Gang, ZHANG Yongwei. Thermal properties of two-dimensional materials[J]. Chinese Physics B, 2017, 23(3): 034401. |
65 | ZHANG Lianbin, TANG Bo, WU Jinbo, et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced Materials, 2015, 27(33): 4889-4894. |
66 | YANG Xiangdong, YANG Yanbing, FU Linna, et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2017, 28(3): 1704505. |
67 | 常宇虹. 纳米过渡金属氧族化合物的太阳能光热蒸汽转化研究[D]. 济南: 山东大学, 2019. |
CHANG Yuhong. Nano transition metal chalcogen compounds for solar steam generation[D]. Jinan: Shandong University, 2019. | |
68 | WANG Qingmiao, JIA Feifei, HUANG Anhua, et al. MoS2@sponge with double layer structure for high-efficiency solar desalination[J]. Desalination, 2020, 481: 114359-114365. |
69 | GUO Zhenzhen, WANG Gang, MING Xin, et al. PEGylated self-growth MoS2 on cotton cloth substrate for high-efficiency solar energy utilization[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24583-24589. |
70 | WANG Qingmiao, GUO Qijing, JIA Feifei, et al. Facile preparation of 3D MoS2 aerogels for highly efficient solar desalination[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32673-32680. |
71 | GHIM Deoukchen, JIANG Qisheng, CAO Sisi, et al. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification[J]. Nano Energy, 2018, 53: 949-957. |
72 | VRIJENHOEK Eric M, HONG Seungkwan, ELIMELECH Menachem. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 2001, 188(1): 115-128. |
73 | JIANG Qisheng, TIAN Limei, LIU Kengku, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28(42): 9400-9407. |
74 | YU Shengtao, ZHANG Yao, DUAN Haoze, et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system[J]. Scientific reports, 2015, 5: 13600. |
75 | LI Xiuqiang, XU Weichao, TANG Mingyao, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-13958. |
76 | CHEN Rong, WANG Xun, GAN Qimao, et al. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection[J]. Journal of Materials Chemistry A, 2019, 7(18): 11177-11185. |
77 | ZHANG Lei, MU Li, ZHOU Qixing, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research, 2020, 170: 115367. |
78 | LI Weigu, TEKELL Marshall C, HUANG Yun, et al. Synergistic high-rate solar steaming and mercury removal with MoS2/C@polyurethane composite sponges[J]. Advanced Energy Materials, 2018, 8(32): 1802108. |
79 | WANG Qingmiao, QIN Yi, JIA Feifei, et al. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation[J]. Renewable Energy, 2020, 163: 146-153. |
[1] | 秦建, 刘天霞, 王建, 卢星. 油酸改性石墨烯/二硫化钼复合材料润滑添加剂的制备及摩擦学特性[J]. 化工进展, 2022, 41(9): 4973-4985. |
[2] | 李翱, 王宏洋, 孙宇巍, 王旭, 汪霞, 朱光灿. 流动电极电容去离子去除铵根离子模型及优化[J]. 化工进展, 2022, 41(4): 2123-2131. |
[3] | 郑安达, 杨成功, 王冬娥, 田志坚. 水热合成rGO负载的MoS2催化剂及其催化蒽加氢性能[J]. 化工进展, 2022, 41(1): 244-252. |
[4] | 周丽亚, 周栖桐, 赵聪俐, 姜艳军, 马丽, 贺莹. 基于铂、钯负载的MoS2纳米片构建生物传感器及应用[J]. 化工进展, 2021, 40(8): 4371-4380. |
[5] | 王艺蒙, 刘建军, 左胜利, 李抗. MoS2光电催化剂活性位点的优化和效能研究进展[J]. 化工进展, 2021, 40(7): 3747-3759. |
[6] | 赵东升. 二硫化钼纳米片基水处理纳滤/反渗透膜研究进展[J]. 化工进展, 2021, 40(10): 5590-5599. |
[7] | 朱向阳, 乔栋, 毕秦岭, 邢慧芳, 倪善, 杨良嵘, 刘会洲. 磁载体MoS2催化剂制备及其重油减黏[J]. 化工进展, 2020, 39(S1): 170-174. |
[8] | 王廷, 侯焕娣, 董明, 陶梦莹, 龙军. 浆态床油溶性加氢催化剂前体的研究进展[J]. 化工进展, 2020, 39(9): 3669-3676. |
[9] | 王培灿, 雷青, 刘帅, 王保国. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展, 2019, 38(01): 278-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |