化工进展 ›› 2021, Vol. 40 ›› Issue (1): 48-56.DOI: 10.16085/j.issn.1000-6613.2020-0326

• 化工过程与装备 • 上一篇    下一篇

非均匀电场作用下气泡生长及运动特性

杨世杰(), 王军锋(), 张伟, 王东保   

  1. 江苏大学能源与动力工程学院,江苏 镇江 212013
  • 收稿日期:2020-03-06 出版日期:2021-01-05 发布日期:2021-01-12
  • 通讯作者: 王军锋
  • 作者简介:杨世杰(1994—),男,硕士研究生,研究方向为荷电两相流气泡动力学。E-mail:yshijie94@qq.com
  • 基金资助:
    国家自然科学基金(国际(地区)合作项目-重点)(51761145011)

Characteristics of bubble generation and motion under non-uniform electric field

Shijie YANG(), Junfeng WANG(), Wei ZHANG, Dongbao WANG   

  1. School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2020-03-06 Online:2021-01-05 Published:2021-01-12
  • Contact: Junfeng WANG

摘要:

气液两相流广泛应用于化工、石油等工业生产中,电场可以有效强化相间作用。为探究电场作用下气泡的生长演化特性,本文采用显微高速数码摄像技术对气泡生长、脱离过程及运动进行可视化研究,精确捕捉了非均匀电场作用下气泡产生、脱离和运动过程的显微形貌特性,结合图像处理技术定量分析了电场强度对气泡生长时间、脱离频率、体积及运动速度的影响规律。实验结果表明电场作用改变了气泡的生长方式,显著地促进了气泡的脱离及运动。电场作用下气泡的脱离频率明显增大,相较于无电场情况下增加了几十倍,最短脱离周期可达到10ms左右。气泡脱离体积显著减小,相应的最小气泡直径为毛细管直径一半。气泡初始速度大约增加4倍,横向速度达到80mm/s左右,强化了气泡在液体中的分散性。这为荷电气液两相流工业应用提供了良好的理论基础。

关键词: 非均匀直流电场, 显微高速摄像, 气泡生长, 脱离频率, 分散性

Abstract:

Gas-liquid two-phase is widely observed in chemical industry, petroleum and other industrial production. The application of an electric field is considered as an effective method to enhance the phase interactions. In order to explore the growth characteristics of bubble under the non-uniform electric field, microscopic high-speed digital camera technology was used to visualize bubbles growth, detachment and movement. The micro-morphological characteristics of bubble were accurately captured. Moreover, a specific codes was set to obtain the bubble characteristic information quantitatively from the captured images, including bubble growth time, detachment frequency, volume, and velocity of movement. The results show that both the bubble growth patterns and subsequent motion are altered significantly by the electric field. The increase of the field strength causes the acceleration of bubble departure frequency and departure velocity, and the decrease of the bubble departure volume. Quantitatively, the departure frequency increased dozens of times compared with the result in free-field condition. The generation period reaches 10ms under the electric field. Bubble diameter can be reduced to half of the inner diameter of the capillary. The initial velocity of the bubble increases about four times. The lateral velocity is 80mm/s. The electric field strengthens the dispersion of bubbles in the liquid. These results provide a theoretical basis for the industrial application of charged two-phase flow.

Key words: non-uniform DC electric field, microscopic high-speed camera, bubble growth, detachment frequency, dispersion

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn