1 | YE H H, HU D, SHI X L, et al. Directed modification of a novel epoxide hydrolase from Phaseolus vulgaris to improve its enantioconvergence towards styrene epoxides[J]. Catalysis Communication, 2016, 87(5): 32-35. | 2 | WU S K, LI A T, CHIN Y S, et al. Enantioselective hydrolysis of racemic and meso-epoxides with recombinant Escherichia coli expressing epoxide hydrolase from Sphingomonas sp. HXN-200: preparation of epoxides and vicinal diols in high ee and high concentration[J]. ACS Catalysis, 2013, 3(4): 752-759. | 3 | BISI A, RAMPA A, BUDRIESI R, et al. Cardiovascular hybrid drugs: new benzazepinone derivatives as bradycardic agents endowed with selective β1-non-competitive antagonism[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 11(3): 1353-1361. | 4 | KOTIK M, ARCHELAS A, WOHLGEMUTH R. Epoxide hydrolases and their application in organic synthesis[J]. Current Organic Chemistry, 2012, 16(2): 451-482. | 5 | 孔旭东,郁惠蕾,周佳海,等. 环氧水解酶的结构基础及新酶开发[J]. 生物加工过程. 2013, 1(14): 1672-3678. | 5 | KONG X D, YU H L, ZHOU J H, et al. Structure basis of EHs and development of novel EHs as biocatalyst[J]. Chinese Journal of Bioprocess Engineering. 2013, 1(14): 1672-3678. | 6 | 贺婉红. 绿豆环氧水解酶基因克隆、表达及酶学性质表征[D]. 上海: 华东理工大学, 2011. | 6 | HE W H. Cloning, expression and characterization of a novel epoxide hydrolase form Vigna radiata [D]. Shanghai: East China University of Science and Technology, 2011. | 7 | 吴燕雯. 绿豆环氧水解酶VrEH2催化性质研究及分子改造的初步探索[D]. 上海: 华东理工大学, 2015. | 7 | WU Y W. Studies on the catalytic properties of epoxide hydrolase 2 from Vigna radiata (VrEH2) and its preliminary molecular modification [D]. Shanghai: East China University of Science and Technology, 2015. | 8 | SHENG Y M, WEI C, ZHANG Z F, et al. Enantioselective hydrolysis of glycidyl methylphenyl ethers by Botryosphaeria Dothidea zjuzq007: effect of substitution pattern on enantioselectivity[J]. Applied Biochemistry and Biotechnology, 2011, 164(5): 125-7132. | 9 | REETZ M T, ZHENG H B. Manipulating the expression rate and enantioselectivity of an epoxide hydrolase by using directed evolution[J]. ChemBioChem, 2011, 12(7): 1529-1535. | 10 | LI C, HU D, ZONG X C, et al. Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris epoxide hydrolase with extremely high enantioselectivity and regioselectivity[J]. Catalysis Communication, 2017, 102(12): 57-61. | 11 | HU B C, LI C, WANG R, et al. Improvement in the activity and enantioconvergency of PvEH3, an epoxide hydrolase from Phaseolus vulgaris, for p-chlorostyrene oxide by site-saturation mutagenesis[J]. Catalysis Communication, 2018, 117(12): 9-13. | 12 | 叶慧华. 菜豆环氧化物水解酶PvEH1的催化性质研究及分子改造研究[D]. 无锡: 江南大学, 2017. | 12 | YE H H. The catalytic properties of Phaseolus vulgaris epoxide hydrolase and its directed modification [D]. Wuxi: Jiangnan University, 2017. | 13 | 阚婷婷. 菜豆环氧化物水解酶PvEH1的定向改造及应用研究[D]. 无锡: 江南大学, 2019. | 13 | KAN T T. Studies on directed modification and application of epoxide hydrolase PvEH1 [D]. Wuxi: Jiangnan University, 2019. | 14 | LI C, ZHAO J, HU D, et al. Multiple site-directed mutagenesis of a Phaseolus vulgaris epoxide hydrolase to improve its catalytic performance towards p-chlorostyrene oxide based on the computer-aided re-design[J]. International Journal of Biological Macromolecules, 2019, 121(1): 326-332. | 15 | KONG X D, YUAN S G, LI L, et al. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 15717-15722. | 16 | SCHI?TT B, BRUICE T C. Reaction mechanism of soluble epoxide hydrolase: insights from molecular dynamics simulations[J]. Journal of the American Chemical Society, 2002, 124(12): 14558-14570. | 17 | BAUER P, CARLSSON A J, AMREIN B A, et al. Conformational diversity and enantioconvergence in potato epoxide hydrolase 1[J]. Organic & Biomolecular Chemistry, 2016, 14(24): 5639-5651. | 18 | CHOI W J, HUH E C, PARK H J, et al. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis[J]. Biotechnology Techniques, 1998, 12(3): 225-228. | 19 | XU Y, XU J H, PAN J, et al. Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii: cell/substrate ratio influences the optical purity of (R)-epoxides[J]. Biotechnology Letters, 2004, 26(8): 1217-1221. |
|