化工进展 ›› 2020, Vol. 39 ›› Issue (4): 1378-1388.DOI: 10.16085/j.issn.1000-6613.2019-1161
收稿日期:
2019-07-18
出版日期:
2020-04-05
发布日期:
2020-04-28
通讯作者:
郑旭
作者简介:
郑旭(1989—),女,博士,研究方向为复合材料及除湿空调技术。E-mail:基金资助:
Received:
2019-07-18
Online:
2020-04-05
Published:
2020-04-28
Contact:
Xu ZHENG
摘要:
利用调湿材料吸放湿特性来调节室内湿度的被动除湿技术,无需任何机械设备和能源消耗,具有较好的节能和生态效益。高效调湿材料的研制是该技术能否有效实施的前提,复合调湿材料很好地克服了单一调湿材料难以同时满足高吸湿容量和高吸放湿速度的要求,是建筑节能和材料科学领域的研究热点之一。本文将复合调湿材料分为无机-无机、无机-有机、无机-生物质、有机-生物质四大类,并针对上述分类的特点进行了系统的归纳与总结。主要概括了典型复合调湿材料的合成工艺、湿容量、吸放湿速率等调湿性能以及在建筑中的相关应用研究。同时,基于现有研究,梳理了今后研究中亟待解决的关键问题,以期为基于调湿材料的被动除湿技术的发展提供有价值的借鉴和参考。
中图分类号:
郑旭,袁丽婷. 复合调湿材料的研究现状及最新进展[J]. 化工进展, 2020, 39(4): 1378-1388.
Xu ZHENG,Liting YUAN. Recent progress on composite humidity control materials[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1378-1388.
名称 | 原理 | 不足 | 文献 |
---|---|---|---|
水蒸气扩散系统和平衡含湿量法 | 水蒸气扩散系数表征调湿材料与被调空间的湿传递速度;平衡含湿量表征调湿材料的蓄湿能力 | 未考虑温度对湿度变化的影响 | [ |
平衡吸放湿曲线法 | 通过平衡含湿量以及平衡含湿量对温度和绝对湿度的变化率表示 | 只能表征空气温度或湿度缓慢变化的情况 | [ |
单位表面积吸放湿量法 | 通过实验手段测试密闭空间中温度变化引起调湿材料单位表面积的吸放湿量 | 受具体密闭空间、温度变化、调湿材料用量等实验条件限制,不具有普适性 | [ |
B指标法 | 基于密闭空间中绝对湿度的对数与平衡温度的近似直线关系 | 仅适用外界温度缓慢变化且调节目标状态温度为0℃工况 | [ |
BT指标法 | 改进的B指标法,可基于所调节目标温度导出调湿特性 | 仅适用外界温度缓慢变化工况 | [ |
表1 现有调湿性能评价指标
名称 | 原理 | 不足 | 文献 |
---|---|---|---|
水蒸气扩散系统和平衡含湿量法 | 水蒸气扩散系数表征调湿材料与被调空间的湿传递速度;平衡含湿量表征调湿材料的蓄湿能力 | 未考虑温度对湿度变化的影响 | [ |
平衡吸放湿曲线法 | 通过平衡含湿量以及平衡含湿量对温度和绝对湿度的变化率表示 | 只能表征空气温度或湿度缓慢变化的情况 | [ |
单位表面积吸放湿量法 | 通过实验手段测试密闭空间中温度变化引起调湿材料单位表面积的吸放湿量 | 受具体密闭空间、温度变化、调湿材料用量等实验条件限制,不具有普适性 | [ |
B指标法 | 基于密闭空间中绝对湿度的对数与平衡温度的近似直线关系 | 仅适用外界温度缓慢变化且调节目标状态温度为0℃工况 | [ |
BT指标法 | 改进的B指标法,可基于所调节目标温度导出调湿特性 | 仅适用外界温度缓慢变化工况 | [ |
1 | |
BRADY L, ABDELLATIF M. Assessment of energy consumption in existing buildings[J]. Energy and Buildings, 2017, 149: 142-150. | |
2 | |
MA Z, SONG J, ZHANG J. Energy consumption prediction of air-conditioning systems in buildings by selecting similar days based on combined weights[J]. Energy and Buildings, 2017, 151: 157-166. | |
3 | |
TU Y D, WANG R Z, GE T S, et al. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers[J]. Scientific Report, 2017, 7: 40437. | |
4 | |
SULTAN M, EL-SHARKAWY I I, MIYAZAKI T, et al. An overview of solid desiccant dehumidification and air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2015, 46: 16-29. | |
5 | |
SAHLOT M, RIFFAT S B. Desiccant cooling systems: a review[J]. International Journal of Low-Carbon Technologies, 2016, 11(4): 489-505. | |
6 | |
HASEGAWA T, IWASAKI S, SHIBUTANI Y, et al. Preparation of superior humidity-control materials from kenaf[J]. Journal of Porous Materials, 2009, 16(2): 129-134. | |
7 | |
VU, D H, WANG K S, BUI H B. Humidity control porous ceramics prepared from waste and porous materials[J]. Materials Letters, 2011, 65 (6): 940-943. | |
8 | |
REN Q, ZENG Z, JIANG Z, et al. Incorporation of bamboo charcoal for cement-based humidity adsorption material[J]. Construction and Building Materials, 2019, 215: 244-251. | |
9 | |
侯国艳,冀志江,王静,等. 调湿材料的国内外研究概况[J]. 材料导报, 2008, 22(8): 78-82. | |
9 | |
HOU Guoyan, JI Zhijiang, WANG Jing, et al. Domestic and abroad research status of humidity-control materials[J]. Materials Review, 2008, 22(8): 78-82. | |
10 | |
MORIYA Y, ISHII N. Humidity control system with adsorption materials[J]. JSME International Journal Series B: Fluids and Thermal Engineering, 1996, 39(3): 653-659. | |
11 | |
YOUNG J F. Humidity control in the laboratory using salt solutions—a review[J]. Journal of Chemical Technology & Biotechnology, 1967, 17(9): 5. | |
12 | |
TOMURA S, MAEDA M, INUKAI K, et al. Water vapor adsorption property of various clays and related materials for applications to humidity self-control materials[J]. Clay Science, 1997, 10(3): 195-203. | |
13 | |
RUBINGER C P, MARTINS C R, DE PAOLI M A, et al. Sulfonated polystyrene polymer humidity sensor: synthesis and characterization[J]. Sensors and Actuators B: Chemical, 2007, 123(1): 42-49. | |
14 | |
陈冠益, 白晓玲, 张秀梅, 等. 生物质基调湿材料的特性研究[J]. 暖通空调, 2007, 37(11): 14-17. | |
14 | |
CHEN Guanyi, BAI Xiaoling, ZHANG Xiumei, et al. Research on characteristics of biomass-based humidity-controlling materials[J]. Heating Ventilating & Air Conditioning, 2007, 37(11): 14-17. | |
15 | |
王吉会, 王志伟. 复合调湿材料的研究进展[J]. 材料导报, 2007, 21(6): 55-58. | |
15 | |
WANG Jihui, WANG Zhiwei. Advances in humidity-controlling composite materials[J]. Materials Review, 2007, 21(6): 55-58. | |
16 | |
冉茂宇. 日本对调湿材料的研究及应用[J].材料导报, 2002, 16(11): 42-44. | |
16 | |
RAN Maoyu. Review of research and application of air humidity controlling materials in Japan[J]. Materials Review, 2002, 16(11): 42-44. | |
17 | |
DONOHUE M D, ARANOVICH G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76: 137-152. | |
18 | |
牧福美. 内装材料と湿度调节ハウスクリマ研究[M]. 福冈: 秀巧社印刷株式会社, 1980: 45-49. | |
18 | |
Fukumi MAKI. Relationship between humidity conditions and the nature of interior wall materials[M]. Fukuya: Shukkosha Printing Co., Ltd., 1980: 45-49. | |
19 | |
池田哲朗. 调湿材料と湿度调节[J]. 石膏と石灰, 1992, 240: 69-73. | |
19 | |
Tetsuro IKEDA. Wet material and humidity[J]. Gypsum and Lime, 1992, 240: 69-73. | |
20 | |
小野公平. ミュ-ジライトの調湿特性--特に初期応答性について[M]. 旭硝子: 印刷株式会社, 1983: 65-75. | |
20 | |
Ono KONO. Moisture characteristics of music lights-especially on the initial response[M]. Asahi Glass: Printing Co., 1983: 65-75. | |
21 | |
大釜敏正, 则元京, 小原二郎. 壁装の调湿效果II[J]. 木材工业, 1987, 43(1): 14-18. | |
21 | |
Toshimasa OGAMA, Motokyo Tsuji, Jiro Ohara. Humidity controlling performance in walls II[J]. Wood Industry, 1987, 43(1): 14-18. | |
22 | |
冉茂宇. 封闭空间调湿材料新的调湿特性指标及其理论基础[J]. 华侨大学学报(自然版), 2003, 24(1): 64-69. | |
22 | |
RAN Maoyu. A new characteristic index BT of the humidity controlling material in a closed space and its theoretical basis[J]. Journal of Huaqiao University (Natural Science), 2003, 24(1): 64-69. | |
23 | |
REKA A A, PAVLOVSKI B, MAKRESKI P. New optimized method for low-temperature hydrothermal production of porous ceramics using diatomaceous earth[J]. Ceramics International. 2017, 43(15): 12572-12578. | |
24 | |
邓妮, 武双磊, 陈胡星. 氯化钙改性硅藻土的调湿性能[J]. 材料科学与工程学报, 2014, 32(4): 493-498. | |
24 | |
DENG Ni, WU Shuanglei, CHEN Huxing. Humidity-control performance of diatomite modified by calcium chloride[J]. Mater. Sci. Eng., 2014, 32(4): 493-498. | |
25 | |
孔伟, 杜玉成, 卜仓友, 等. 硅藻土基调湿材料的制备与性能研究[J]. 非金属矿, 2011, 34(1): 57-59. | |
25 | |
KONG Wei, DU Yucheng, BU Cangyou, et al. Study on preparation and performance of diatomite-based humidity controlling materials[J]. Non-Metallic Mines, 2011, 34(1): 57-59. | |
26 | |
胡志波, 演阳, 郑水林, 等. 硅藻土/重质碳酸钙复合调湿材料的制备及表征[J].无机材料学报, 2016, 31(1): 81-87. | |
26 | |
HU Zhibo, YAN Yang, ZHENG Shuilin, et al. Preparation and characterization of humidity control material based on diatomite/ground calcium carbonate composite[J]. Journal of Inorganic Materials, 2016, 31(1): 81-87. | |
27 | |
HU Z B, ZHENG S L, JIA M Z, et al. Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material[J]. Advanced Powder Technology, 2017, 28(5): 1372-1381. | |
28 | |
TRAN Y T, LEE J, KUMAR P, et al. Natural zeolite and its application in concrete composite production[J]. Composites Part B: Engineering, 2019, 165: 354-364 | |
29 | |
YANG R T. Adsorbents: fundamentals and applications[M]. New York: John Wiley and Sons, 2003: 157-190. | |
30 | |
周波, 郑佳宜, 陈振乾. 微波辅助NH4Cl改性沸石及其在调湿材料中的应用[J]. 东南大学学报(自然科学版), 2013, 43(4): 835-839. | |
30 | |
ZHOU Bo, ZHENG Jiayi, CHEN Zhenqian. Modification of natural zeolite by microwave assisted ammonium chloride and its application to humidity-controlling materials[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(4): 835-839. | |
31 | |
周波, 陈振乾. 沸石基改性材料的调湿性能实验研究[J]. 热科学与技术, 2017, 16(6): 444-449. | |
31 | |
ZHOU Bo, CHEN Zhenqian. Experimental study on humidity conditioning performance of modified zeolite based hygroscopic materials[J]. Journal of Thermal Science and Technology, 2017, 16(6): 444-449. | |
32 | |
ZHOU B, SHI J, CHEN Z Q. Experimental study on moisture migration process of zeolite-based composite humidity control material[J]. Applied Thermal Engineering. 2018,128: 604-613. | |
33 | |
彭威. 硅酸铁盐调湿材料的制备与性能研究[D]. 武汉: 武汉科技大学, 2016. | |
33 | |
PENG Wei. Study on preparation and performance of iron silicate humidity controlling materials[D]. Wuhan: Wuhan University of Science and Technology, 2016. | |
34 | |
范宏圆, 王德平. 水热合成废弃黏土砖为一种新型调湿材料的研究[J]. 科技视界, 2016, 7: 1-2. | |
34 | |
FAN Hongyuan, WANG Deping. Hydrothermal synthesis of waste clay bricks: a new type of humidity control material[J]. Science & Technology Vision, 2016, 7: 1-2. | |
35 | |
RALPH K I. The chemistry of silica[M]. New York: John Wiley and Sons, 1979: 10-30. | |
36 | |
包剑, 郑晓红, 代彦军. 硅胶用于调节室内湿度的可行性研究[J]. 暖通空调, 2006, 36(11): 54-57. | |
36 | |
BAO Jian, ZHENG Xiaohong, DAI Yanjun. Feasibility study of using silica-gel to regulate indoor humidity[J]. Heating Ventilating & Air Conditioning, 2006, 36(11): 54-57. | |
37 | |
涂耀东. 基于储湿换热器的温湿度弱关联控制高效热泵[D]. 上海: 上海交通大学, 2017. | |
37 | |
TU Yaodong. Comfortable and high-efficient heat hump with water-sorbing heat exchanger by temperature and humidity loosely-coupled control[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
38 | |
SIMONOVA I A, FRENI A, RESTUCCIA G, et al. Water sorption on composite “silica modified by calcium nitrate”[J]. Microporous and Mesoporous Materials, 2009, 122(1): 223-228. | |
39 | |
郑晓红,张小松,代彦军.复合硅胶被动调湿特性试验研究[J]. 建筑科学, 2011, 27(12): 45-48. | |
39 | |
ZHENG Xiaohong, ZHANG Xiaosong, DAI Yanjun. Experimental research on passive humidity control property of composite silica gel[J]. Building Science, 2011, 27(12): 45-48. | |
40 | |
刘业凤, 王如竹. 空气中取水用的新型复合吸附剂的吸附和解吸性能[J]. 化工进展, 2002, 21(10): 733-735. | |
40 | |
LIU Yefeng, WANG Ruzhu. Adsorption and desorption properties of new composite adsorbent to extract water from atmosphere[J]. Chemical Industry and Engineering Progress, 2002, 21(10): 733-735. | |
41 | |
刘业凤, 王如竹. 高吸水性能的新型复合吸附剂SiO2·xH2O·yCaCl2的孔隙结构测试与分析[J]. 中国科学: 技术科学, 2003, 33(9): 856-864. | |
41 | |
LIU Yefeng, WANG Ruzhu. Pore structure of new composite adsorbent SiO2·xH2O·yCaCl2 with high uptake of water from air[J]. Science in China (Series E), 2003, 33(9): 856-864. | |
42 | |
张楠. 功能性复合调湿材料的制备与性能表征[D]. 上海: 华东理工大学, 2012. | |
42 | |
ZHANG Nan. The preparation and characterization of functional composite humidity-controlling materials[D]. Shanghai: East China University of Science and Technology, 2012. | |
43 | |
张文清, 夏玮, 张楠,等. 复合硅胶调湿剂: CN102407093A[P]. 2012-04-11. | |
43 | |
ZHANG Wenqing, XIA Wei, ZHANG Nan, et al. Composite silica gel: humidity control material: CN102407093A[P]. 2012-04-11. | |
44 | |
BU X B, WANG L B, HUANG Y F. Effect of pore size on the performance of composite adsorbent[J]. Adsorption, 2013, 19 (5): 925-935. | |
45 | |
罗曦芸, 吴来明, 张文清, 等. 馆藏文物保存环境调湿材料研究进展[J]. 文物保护与考古科学, 2009, 21(s1): 11-17. | |
45 | |
LUO Xiyun, WU Laiming, ZHANG Wenqing, et al. Research progress of the application of humidity controlling material in museum environment[J]. Sciences of Conservation and Archaeology, 2009, 21(s1): 11-17. | |
46 | |
VU D H, WANG K S, BAC B H. Humidity control porous ceramics prepared from waste and porous materials[J]. Materials Letters, 2011, 65(6): 940-943. | |
47 | |
HU Z, ZHENG S, TAN Y, et al. Preparation and characterization of diatomite/silica composite humidity control material by partial alkali dissolution[J]. Materials Letters, 2017, 196: 234-237. | |
48 | |
WANG X, GAO W, YAN S, et al. Incorporation of sand-based breathing bricks with foamed concrete and humidity control materials[J]. Construction and Building Materials, 2018, 175: 187-195. | |
49 | |
VU D H, WANG K S, BAC B H, et al. Humidity control materials prepared from diatomite and volcanic ash[J]. Construction and Building Materials, 2013, 38: 1066-1072. | |
50 | |
马明明, 张伟. 硅藻土基调湿建筑材料的制备与表征[J]. 新型建筑材料, 2017, 44(12): 86-88. | |
50 | |
MA Mingming, ZHANG Wei. Preparation and characterization of diatomite humidity-controlling building material[J]. New Building Materials, 2017, 44(12): 86-88. | |
51 | |
杨永, 吴志强. 硅藻土基无机调湿材料的制备及其调湿性能研究[J]. 新型建筑材料, 2016, 11: 108-111. | |
51 | |
YANG Yong, WU Zhiqiang. Preparation and performance of diatomite-based inorganic humidity control materials[J]. New Building Materials, 2016, 11: 108-111. | |
52 | |
ZHENG J, SHI J, MA Q, et al. Experimental study on humidity control performance of diatomite-based building materials[J]. Applied Thermal Engineering, 2017, 114: 450-456. | |
53 | |
胡明玉, 付超, 魏丽丽, 等. 钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 材料导报, 2018, 32(4): 1230-1235. | |
53 | |
HU Mingyu, FU Chao, WEI Lili, et al. A high-strength and water-resistant humidity-controlling material prepared by modifying diatomite with vanadium- and iron-containing compound slag[J]. Materials Review, 2018, 32(4): 1230-1235. | |
54 | |
FENG X, QIN M, CUI S, et al. Metal-organic framework MIL-100 (Fe) as a novel moisture buffer material for energy-efficient indoor humidity control[J]. Building and Environment, 2018, 145: 234-242. | |
55 | |
WANG J, REN S, GUO M. Preparation and humidity controlling behaviors of sepiolite/polyacrylic acid (sodium) composite[J]. Procedia Engineering, 2012, 27: 423-430. | |
56 | |
WANG J H, WANG Z W, MA S S, et al. Synthesis, humidity controlling and antibacterial behaviors of potassium acetate/polyacrylamide composite[J]. Chemical Industry and Engineering, 2009, 26(3): 189-193. | |
57 | |
王吉会, 任曙凭, 韩彩. 沸石/聚丙烯酸(钠)复合材料的制备与调湿性能[J]. 化学工业与工程, 2011, 28(1): 1-6. | |
57 | |
WANG Jihui, REN Shupin, HAN Cai. Synthesis and humidity controlling behaviors of zeolite/polyacrylic acid (sodium) composite[J]. Chemical Industry and Engineering, 2011, 28(1): 1-6. | |
58 | |
YANG H, PENG Z, ZHOU Y, et al. Preparation and performances of a novel intelligent humidity control composite material[J]. Energy and Buildings, 2011, 43(2/3): 386-392. | |
59 | |
LI M, WU Z W. Preparation, characterization, and humidity-control performance of organobentonite/sodium polyacrylate mortar[J]. Journal of Macromolecular Science Part B, 2012, 51(8): 1647-1657. | |
60 | |
DONG F, WANG J, WANG Y, et al. Synthesis and humidity controlling properties of halloysite/poly (sodium acrylate-acrylamide) composite[J]. Journal of Materials Chemistry, 2012, 22: 11093-11100. | |
61 | |
GON?ALVES H, GON?ALVES B, SILVA L, et al. The influence of porogene additives on the properties of mortars used to control the ambient moisture[J]. Energy & Buildings, 2014, 74(12): 61-68. | |
62 | |
QIAN Y, LINDSAY C I, MACOSKO C, et al. Synthesis and properties of vermiculite-reinforced polyurethane nanocomposites[J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3709-3717. | |
63 | |
QIAN T, LI J, MIN X, et al. Diatomite: a promising natural candidate as carrier material for low, middle and high temperature phase change material[J]. Energy Conversion and Management, 2015, 98: 34-45. | |
64 | |
SILAKHORI M, METSELAAR H S, MAHLIA T M, et al. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2014, 80: 491-497. | |
65 | |
XU P, YAO Q, YU N, et al. Narrow-dispersed Konjac glucomannan nanospheres with high moisture adsorption and desorption ability by inverse emulsion crosslinking[J]. Materials Letters, 2014, 137: 59-61. | |
66 | |
贾曌, 杨彦功. 高岭石/聚丙烯腈插层共混体系的结构及性能[J]. 高分子材料科学与工程, 2008, 24(2): 111-114. | |
66 | |
JIA Zhao, YANG Yangong. Structure and property blending of polyacrylonitrile and dimethyl formamide intercalated kaolinite[J]. Polymer Materials Science & Engineering, 2008, 24(2): 111-114. | |
67 | |
LEE J, LEE D Y. Sorption characteristics of a novel polymeric desiccant[J]. International Journal of Refrigeration, 2012, 35(7): 1940-1949. | |
68 | |
李鑫, 朱敏斌, 卢其明, 等. CaCl2改性聚丙烯酸基调湿材料的制备与表征[J]. 四川大学学报(工程科学版), 2009, 41(2): 155-161. | |
68 | |
LI Xin, ZHU Minbin, LU Qiming, et al. Synthesis and characterization of poly acrylic acid humidity-controlling composite material modified by CaCl2[J]. Journal of Sichuan University (Engineering Science Edition), 2009, 41(2): 155-161. | |
69 | |
HUANG J Y, JIN Z F, ZHANG Y P. Introduction of hygroscopic material with high storage capacity[C]//Proceedings of the 4th International Symposium on Heating,Ventilating and Air Conditioning. Beijing: Tsinghua University, 2003. | |
70 | |
YUE Q Y, LI Q, GAO B Y, et al. Formation and characteristics of cationic-polymer/bentonite complexes as adsorbents for dyes[J]. Applied Clay Science, 2007, 35(3/4): 268-275. | |
71 | |
曹嘉洌, 罗曦芸, 张文清, 等. 壳聚糖基调湿材料的制备及性能[J]. 化工新型材料, 2009, 37(3): 94-96. | |
71 | |
CAO Jialie, LUO Xiyun, ZHANG Wenqing, et al. Preparation and characterization of humidity controlling materials based on chitosan[J]. New Chemical Materials, 2009, 37(3): 94-96. | |
72 | |
沈方红, 罗曦芸, 张文清, 等. 羧甲基壳聚糖基调湿材料的制备及性能[J]. 功能材料, 2009, 40(10): 1742-1756. | |
72 | |
SHEN Fanghong, LUO Xiyun, ZHANG Wenqing, et al. The preparation and characteristic determination of carboxymethyl chitosan agent which can control humidity[J]. Journal of Functional Materials, 2009, 40(10): 1742-1756. | |
73 | |
张楠, 方淑英, 夏玮, 等. 功能性调湿材料的制备与表征[J]. 功能材料, 2013, 44(3): 446-450. | |
73 | |
ZHANG Nan, FANG Shuying, XIA Wei, et al. Preparation and characterization of functional humidity-controlling materials[J]. Journal of Functional Materials, 2013, 44(3): 446-450. | |
74 | |
YANG Y, RANA D, LAN C Q. Development of solid super desiccants based on a polymeric superabsorbent hydrogel composite[J]. RSC Advances, 2015, 5(73): 59583-59590. | |
75 | |
ZHANG C X, ZHANG W X, PAN Z Y, et al. Research on various factors influencing the moisture absorption property of sodium polyacrylate[J]. Science in China Series B: Chemistry, 2009, 52(7): 1000-1008. | |
76 | |
ZHAO H, ZHANG T, DAI J, et al. Preparation of hydrophilic organic groups modified mesoporous silica materials and their humidity sensitive properties[J]. Sensors and Actuators B: Chemical, 2017, 240: 681-688. | |
77 | |
CAO B Y, TU Y D, WANG R Z. A moisture-penetrating humidity pump directly powered by one-sun illumination[J]. iScience, 2019, 15: 502-513. | |
78 | |
张浩, 黄新杰, 刘秀玉, 等. 优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料[J]. 材料研究学报, 2015, 29(9): 671-678. | |
78 | |
ZHANG Hao, HUANG Xinjie, LIU Xiuyu, et al. Optimization for preparation of phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2[J]. Chinese Journal of Materials Research, 2015, 29(9): 671-678. | |
79 | |
张浩, 黄新杰, 宗志芳, 等. 基于热湿综合性能的棕榈醇-棕榈酸-月桂酸/SiO2复合材料制备方案的响应面法优化[J]. 复合材料学报, 2017, 34(1): 203-209. | |
79 | |
ZHANG Hao, HUANG Xinjie, ZONG Zhifang, et al. Optimization of preparation program for hexadecanol-palmitic acid-lauric acid/SiO2 composite materials by response surface methodology based on heat & moisture comprehensive property[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 203-209. | |
80 | |
尚建丽, 张浩. 癸酸-棕榈酸/SiO2相变储湿复合材料的制备与表征[J]. 复合材料学报, 2016, 33(2): 341-349. | |
80 | |
SHANG Jianli, ZHANG Hao. Preparation and characterization of decanoic acid-palmitic acid/SiO2 phase change and humidity storage composites[J]. Acta Materiae Compositae Sinica, 2016, 33(2): 341-349. | |
81 | |
尚建丽, 张浩, 熊磊, 等. 基于傅里叶红外光谱的SiO2基相变储湿复合材料结构分析及性能优选预测[J]. 光谱学与光谱分析, 2016, 36(8): 2430-2436. | |
81 | |
SHANG Jianli, ZHANG Hao, XIONG Lei, et al. Structural analysis and optimization performance forecast of SiO2-based phase change and humidity storage composite materials with fourier transform infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2430-2436. | |
82 | |
张浩. 基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料[J]. 材料工程, 2017, 8: 24-29. | |
82 | |
ZHANG Hao. Optimizing preparation of micron SiO2-based phase change and humidity controlling composites with uniform particle size distribution based on rbf neural network[J]. Journal of Materials Engineering, 2017, 8: 24-29. | |
83 | |
朱大有, 张浩. 超声波辅助制备癸酸-棕榈酸@改性SiO2调温调湿复合材料[J]. 复合材料学报, 2019, 36(6): 1374-1380. | |
83 | |
ZHU Dayou, ZHANG Hao. Preparation of decanoicacid-palmiticacid @modified SiO2 temperature and humidity control composites with ultrasonic wave-assisted[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1374-1380. | |
84 | |
宗志芳, 陈德鹏, 卜双双. 基于FTIR和RBF网络的二元脂肪酸/SiO2相变储湿复合材料热湿性能优选预测[J]. 复合材料学报, 2018, 35(8): 2246-2251. | |
84 | |
ZONG Zhifang, CHEN Depeng, BU Shuangshuang. Optimization thermal-humidity performance forecast of binary fatty acid/SiO2 phase change humidity storage composite materials by FTIR and RBF neural network[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2246-2251. | |
85 | |
FU H X, ZHANG L Z, XU J C, et al. A dual-scale analysis of a desiccant wheel with a novel organic-inorganic hybrid adsorbent for energy recovery[J]. Applied Energy, 2016,163: 167-179. | |
86 | |
ZHANG B, CUI Y, YIN G, et al. Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel[J]. International Journal of Polymeric Materials, 2010, 59(12): 1018-1032. | |
87 | |
陈伟, 魏凤兰, 刘锷,等. 温室用复合调湿材料特性的试验研究[J]. 沈阳农业大学学报, 2011, 42(4): 494-496. | |
87 | |
CHEN Wei, WEI Fenglan, LIU E. Characteristics on humidity-controlled composite material in greenhouse[J]. Journal of Shenyang Agricultural University, 2011, 42(4): 494-496. | |
88 | |
尚建丽, 黄沛增, 闫增峰, 等. 环保型调湿材料的调湿性能试验研究[J]. 新型建筑材料, 2007, 34(10): 20-22. | |
88 | |
SHANG Jianli, HUANG Peizeng, YAN Zengfeng, et al. Experimental study on humidity control performance of environmental friendly humidity-controlling material[J]. New Building Materials, 2007, 34(10): 20-22. | |
89 | |
吉军, 张建, 汪奎宏, 等. 工艺因子对杨木/蒙脱土纳米复合材料吸水性影响的研究[J]. 中国木材, 2007, 5: 22-24. | |
89 | |
JI Jun, ZHANG Jian, WANG Kuihong, et al. Research on craft factors affecting water absorption of cottonwood/mmt nanometer compound material[J]. China Timber, 2007, 5: 22-24. | |
90 | |
胡明玉, 李晔, 郭兴国, 等. 硅藻土/泥炭藓复合调湿材料温湿度调节效果研究[J]. 建筑科学, 2019, 35(4): 50-59. | |
90 | |
HU Mingyu, LI Ye, GUO Xingguo, et al. Effect of diatomite/sphagnum composite humidity-controlling materials on temperature and humidity control[J]. Building Science, 2019, 35(4): 50-59. | |
91 | |
胡明玉, 刘章君, 樊财进, 等. 新型硅藻土调湿材料温湿度调节效果及机制[J]. 功能材料, 2019, 50(3): 3014-3019. | |
91 | |
HU Mingyu, LIU Zhangjun, FAN Caijin, et al. Effect of temperature and humidity control and the mechanism of new diatomite humidity-controlling materials[J]. Journal of Functional Materials, 2019, 50(3): 3014-3019. | |
92 | |
HUANG P X. Hygrothermal performance of Moso bamboo-based building material[D]. Bath: University of Bath, 2017. | |
93 | |
LIN H, SRITHAM E, LIM S, et al. Synthesis and characterization of pH- and salt‐sensitive hydrogel based on chemically modified poultry feather protein isolate[J]. Journal of Applied Polymer Science, 2010, 116(1): 602-609. | |
94 | |
沈跃华. 可降解植物纤维调湿材料及其生产工艺的研制和开发[D]. 上海: 复旦大学, 2010. | |
94 | |
SHEN Yuehua. Development of degradable plant fiber conditioning materials and production processes[D]. Shanghai: Fudan University, 2010. | |
95 | |
FEKETE T, BORSA J, TAKáCS E, et al. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking[J]. Cellulose, 2014, 21(6): 4157-4165. | |
96 | |
LIU Z, MIAO Y, WANG Z, et al. Synthesis and characterization of a novel super-absorbent based on chemically modified pulverized wheat straw and acrylic acid[J]. Carbohydrate Polymers, 2009, 77(1): 131-135. | |
97 | |
沈智, 李芳红, 张哲, 等. 高粱秸秆-g-聚丙烯基化合物/坡缕石黏土高吸水树脂制备及动力学研究[J]. 精细化工, 2012, 29(9): 65-70. | |
97 | |
SHEN Zhi, LI Fanghong, ZHANG Zhe, et al. Preparation of SS-g-P (AA/AM)/PGS superabsorbent resin[J]. Fine Chemicals, 2012, 29(9): 65-70. | |
98 | |
CHENG W M, HU X M, WANG D M, et al. Preparation and characteristics of corn straw-co-AMPS-co-AA superabsorbent hydrogel[J]. Polymers, 2015, 7(11): 2431-2445. | |
99 | |
MA Z, LI Q, YUE Q, et al. Synthesis and characterization of a novel super-absorbent based on wheat straw[J]. Bioresource Technology, 2011, 102(3): 2853-2858. | |
100 | |
孙自顺, 万涛, 熊磊, 等.玉米秸秆复合高吸水树脂的制备与性能[J]. 广州化工, 2012, 40(8): 74-77. | |
100 | |
SUN Zishun, WAN Tao, XIONG Lei, et al. Preparation and properties of corn stalk-composite superabsorbent[J]. Guangzhou Chemical Industry, 2012, 40(8): 74-77. | |
101 | |
YU Y, ZHANG Y, YANG X, et al. Biodegradation process and yellowing mechanism of an ecofriendly superabsorbent based on cellulose from flax yarn wastes[J]. Cellulose, 2015, 22(1): 329-338. | |
102 | |
尚建丽, 陈丹, 武斌. 生物质多孔相变材料的制备及调温调湿性能研究[J]. 化工新型材料, 2015(1): 107-109. | |
102 | |
SHANG Jianli, CHEN Dan, WU Bin. Preparation of the biomass porous phase change materials and its thermal and moisture properties[J]. New Chemical Materials, 2015(1): 107-109. |
[1] | 舒钊, 钟珂, 肖鑫, 贾洪伟, 吕凤勇, 常沙. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
[2] | 孙婉纯, 冯锦新, 张正国, 方晓明. 相变储热技术用于被动式建筑节能的研究进展[J]. 化工进展, 2020, 39(5): 1824-1834. |
[3] | 杨英英, 伏舜宇, 武卫东, 张兵. 新型建筑用二元复合定型相变材料的制备及性能评价[J]. 化工进展, 2020, 39(10): 4119-4126. |
[4] | 杜海燕,郭 航. 热管在太阳能热水器中的应用 [J]. 化工进展, 2008, 27(3): 390-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |