化工进展 ›› 2020, Vol. 39 ›› Issue (3): 1057-1069.DOI: 10.16085/j.issn.1000-6613.2019-0924
收稿日期:
2019-06-10
出版日期:
2020-03-05
发布日期:
2020-04-03
通讯作者:
张林
作者简介:
赵海洋(1988—),男,博士,工程师,研究方向为水处理。E-mail:基金资助:
Haiyang ZHAO1(),Shiying NI2,Lin ZHANG3()
Received:
2019-06-10
Online:
2020-03-05
Published:
2020-04-03
Contact:
Lin ZHANG
摘要:
放射性污染会引起生态环境问题,安全高效地处理放射性废水是我国应对环境安全的迫切需求,因此,研发高效的放射性处理技术和材料具有重要意义。近年来,纳米材料因其独特的物化性质受到广泛关注,被尝试用于放射性废水处理,并表现出良好的应用潜力。本文综述了国内外研究者利用纳米材料处理放射性废水的研究进展,总结了纳米材料作为吸附剂和膜材料对水体放射性核素的处理性能和应用情况:一方面,高比表面积的纳米材料作为新型吸附剂,经适当化学处理后具有大量活性位点和纳米孔,可高效吸附处理放射性废水;另一方面,种类丰富的纳米材料可作为制膜材料和添加剂,增加膜材料种类和制备调控维度,改善传统膜对水体放射性核素的去除效果。最后,总结了处理放射性废水的纳米材料选择依据,并讨论了纳米材料在放射性废水处理中需要引起重视的几个问题。
中图分类号:
赵海洋,倪士英,张林. 纳米材料在放射性废水处理中的应用进展[J]. 化工进展, 2020, 39(3): 1057-1069.
Haiyang ZHAO,Shiying NI,Lin ZHANG. Application of nanomaterials in the radioactive wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1057-1069.
1 | 张晓媛,顾平,张光辉.纳米材料在放射性废水处理中的吸附应用[J].环境化学,2016,35(10):2162-2171. |
ZHANG Xiaoyuan,GU Ping,ZHANG Guanghui.Application of adsorptive nanomaterials in radioactive water treatment[J].Environmental Chemistry,2016,35(10):2162-2171. | |
2 | LU S H,SUN Y B,CHEN C L.Adsorption of radionuclides on carbon-based nanomaterials[J].Interface Science and Technology,2019,29:141-215. |
3 | SHIM J W,PARK S J,RYU S K.Effect of modification with HNO and NaOH on metal adsorption by pitch-based activated carbon fibers[J].Carbon,2001,39(11):1635-1642. |
4 | 杜毅,王建,王宏青,等.人工纳米材料吸附放射性核素的机理研究[J].农业环境科学学报,2016,35(10):1837-1847. |
DU Yi,WANG Jiang,WANG Hongqing,et al.Research on sorption mechanism of radionuclides by manufactured nanomaterials[J].Journal of Agro-Environment Science,2016,35(10):1837-1847. | |
5 | TAN X L,REN X M,CHEN C L,et al.Analytical approaches to the speciation of lanthanides at solid-water interfaces[J].TRAC-Trend Anal. Chem.,2014,61:107-132. |
6 | KENTONA R,WOOYONG U,MARKUS F.Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow[J].Environ. Sci. Technol.,2010,44(21):8089-8094. |
7 | OLSSON M,JAKOBSSON A M,ALBINSSON Y.Sorption of Pu(VI) onto TiO2[J].J. Colloid Interf. Sci.,2003,266(2):269-275. |
8 | XU J Z,FAN Q H,NIU Z W,et al.Studies of Eu(III) sorption on TiO2: effects of pH, humic acid and poly(acrylic acid) [J].Chem. Eng. J.,2012,179(1):186-192. |
9 | TAN X,WANG X,FANG M,et al.Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods[J].Colloid Surface A,2007,296(1):109-116. |
10 | TAN X,WANG X,CHEN C,et al.Effect of soil humic and fulvic acids, pH and ionic strength on Th(Ⅳ) sorption to TiO2 nanoparticles[J].Appl. Radiat. Isotopes,2007,65(4):375-381. |
11 | LIANG Z,XU M,WEI G,et al.Fe3O4@titanate nanocomposites: novel reclaimable adsorbents for removing radioactive ions from wastewater[J].J. Mater. Sci. Mater. Electron.,2015,26(5):2742-2747. |
12 | MAJIDNIA Z,IDRIS A.Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads[J].Appl. Radiat. Isotopes,2015,105:105-113. |
13 | FAN F L,QIN Z,BAI J,et al.Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles[J].J. Environ. Radioact.,2012,106(2):40-46. |
14 | LIU X,HU Q,FANG Z,et al.Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal[J].Langmuir,2009,25(1):3-8. |
15 | DING C,CHENG W,SUN Y,et al.Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J].J. Hazard. Mater.,2015,295:127-137. |
16 | MU W,LI X,LIU G,et al.Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers[J].Dalton Trans.,2015,45(2):753-759. |
17 | LU Y,LIU H,GAO R,et al.Coherent interface assembled Ag2O anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture[J].ACS Appl. Mater. Interfaces,2016,8(42):29179-29185. |
18 | MU W,YU Q,LI X,et al.Adsorption of radioactive iodine on surfactant-modified sodium niobate[J].RSC Adv.,2016,6(85):81719-81725. |
19 | BO A,SARINA S,ZHENG Z,et al.Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent[J]. J. Hazard. Mater., 2013,246/247(4):199-205. |
20 | KAYNAR Ü H,AYVACIKLI M,Ü HIÇSÖNMEZ,et al.Removal of thorium (Ⅳ) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies[J].Journal of Environmental Radioactivity,2015,150:145-151. |
21 | KAYNAR Ü H,AYVACIKLI M,Ç KAYNAR S,et al.Removal of uranium(Ⅵ) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis[J].J. Radioanal. Nucl. Chem.,2014,299(3):1469-1477. |
22 | 万小岗,杨胜亚.纳米级零价铁处理含铀废水初步实验研究[J].工业水处理,2012,32(3):42-44. |
WAN Xiaogang,YANG Shengya.Study on the treatment of U(Ⅵ)-bearing wastewater by nano zero-valent iron[J].Industrial Water Treatment,2012,32(3):42-44. | |
23 | XU J,LI Y,CHEN J,et al.Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron[J].J. Radioanal. Nucl. Chem.,2014,299(1):329-336. |
24 | DARAB J G,AMONETTE A B,BURKE D S D,et al.Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron[J].Cheminform,2010,19:5703-5713. |
25 | 张煜昌,王娜,那平.Ag/TiO2复合材料的制备及其对碘离子的吸附研究[J].离子交换与吸附,2013,29(4),296-305. |
ZHANG Yuchang,WANG Na,NA Ping.Study on preparation of Ag/TiO2 composite materials and its adsorption properties for iodine ions[J].Ion Exchange and Adsorption,2013,29(4):296-305. | |
26 | LIU S,NA W,ZHANG Y,et al.Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation[J].J. Hazard. Mater.,2015,284:171-81. |
27 | 王长柏,李小燕,刘义保,等.纳米零价铁去除溶液中Pb2+的研究[J].环境科技,2014,3:1-4. |
WANG Changbo LI Xiaoyang,LIU Yibao,et al.Study on thenZVI on the Pb2+ removal[J].Environ. Sci. Technol.,2014,3:1-4. | |
28 | 王长柏,李小燕,刘义保,等.包覆型纳米零价铁去除溶液中Pb(Ⅱ)-210的研究[J].辐射研究与辐射工艺学报,2014,32(3):54-58. |
WANG Changbo,LI Xiaoyan,LIU Yibao,et al.Study on removal of Pb(II)-210 from aqueous solution by coated nanoscale zero-valent iron[J]. J. Radiat. Res. Radiat. Process,2014,32(3):54-58. | |
29 | GAO Z,BANDOSZ T J,ZHAO Z,et al.Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes[J].J. Hazard. Mater.,2009,167(1):357-365. |
30 | SUN Y,YANG S,SHENG G,et al.The removal of U(Ⅵ) from aqueous solution by oxidized multiwalled carbon nanotubes[J].J. Environ. Radioactiv.,2012,105(2):40-47. |
31 | LI Y H,WANG S,LUAN Z,et al.Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized carbon nanotube[J].Carbon,2003,41(5):1057-1062. |
32 | YANG J,DONG Y,LI J,et al.Removal of Co(Ⅱ) from aqueous solutions by sulfonated magnetic multi-walled carbon nanotubes[J].Korean J. Chem. Eng.,2015,32(11):2247-2256. |
33 | SHAO D,JIANG Z,WANG X,et al.Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. J. Phys. Chem. B,2009,113(4):860. |
34 | SHENG G,LI Y,DONG H,et al.Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes[J].J. Radioanal. Nucl. Chem.,2012,293(3):797-806. |
35 | SHAO D,HU J,WANG X.Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO22+, Cu2+, and Pb2+ from aqueous solutions[J].Plasma Process Polym.,2010,7(12):977-85. |
36 | YANG D,SARINA S,ZHU H,et al.Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes[J].Angew. Chem.Int. Edit.,2011,50(45):10594-10598. |
37 | XU M,WEIL G,LI S,et al.Titanate nanotubes as a promising absorbent for high effective radioactive uranium ions uptake[J].J. Nanosci. Nanotechnol.,2012,12(8):6374-6379. |
38 | LIU J,LUO M,PING A.Synthesis, characterization, and application of titanate nanotubes for Th(Ⅳ) adsorption[J].J. Radioanal. Nucl. Chem.,2013,298(2):1427-1434. |
39 | XU M,WEI G,LIU N,et al.Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater[J].Nanoscale,2013,6(2):722-725. |
40 | SUN Y B,WU Z Y,WANG X X,et al.Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J].Environ. Sci. Technol.,2016,50(8):4459-4467. |
41 | SUN Y B,LU S H,WANG X X,et al.Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of238U(Ⅵ) and241Am(Ⅲ) [J].Environ. Sci. Technol.,2017,51(21):12274-12282. |
42 | HU B W,HU Q Y,XU D,et al.The adsorption of U(Ⅵ) on carbonaceous nanofibers: a combined batch, EXAFS and modeling techniques[J].Sep. Purif. Technol.,2017,175:140-146. |
43 | YANG D J,ZHENG Z F,ZHU H Y,et al.Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water[J].Adv. Mater.,2008,20:2777-2781. |
44 | SARINA S,BO A,LIU D,et al.Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents[J].Chem. Mater.,2014,26(16):4788-4795. |
45 | MU W,YU Q,LI X,et al.Niobate nanofibers for simultaneous adsorptive removal of radioactive strontium and iodine from aqueous solution[J].J. Alloy. Compd.,2017,693:550-557. |
46 | XU D,TAN X,CHEN C,et al.Removal of Pb(Ⅱ) from aqueous solution by oxidized multiwalled carbon nanotubes[J].J. Hazard. Mater.,2008,154(1):407-416. |
47 | ANNA Y R,SLESAREV A S,KALMYKOV S N,et al.Graphene oxide for effective radionuclide removal[J].Phys. Chem. Chem. Phys.,2013,15(7):2321-2327. |
48 | SUN Y,YANG S,CHEN Y,et al.Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J].Environ. Sci. Technol.,2015,49(7):4255-4262. |
49 | FANG F,KONG L,HUANG J,et al.Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J].J. Hazard. Mater.,2014,270(3):1-10. |
50 | WU S,ZHANG K,WANG X,et al.Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide[J].Chem. Eng. J.,2015,262(1/2):1292-1302. |
51 | SONG W,WANG X,WANG Q,et al.Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J].Phys. Chem. Chem. Phys.,2015,17(1):398. |
52 | YANG H,LEI S,ZHAI J,et al.In situ controllable synthesis of magnetic prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water[J].J. Mater. Chem. A,2013,2(2):326-332. |
53 | WEN T,WU X,LIU M,et al.Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J].Dalton T.,2014,43(20):7464-7472. |
54 | HE C,SHAO D,LI J,et al.The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide[J].Chem. Eng. J.,2014,254(7):623-634. |
55 | GU P,ZHANG S,LI X,et al.Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution[J].Environ. Pollut.,2018,240:493-505. |
56 | 韩玉,丁珂,孙翠华,等.钛酸钠纳米片对水溶液中放射性离子的吸附研究[J].青岛大学学报(自然科学版),2013,26(3):43-48. |
HAN Yu,DING Ke,SUN Cuihua,et al.Layered titanate nanolaminas as efficient adsorbent for the removal of radioactive ions from water[J].J. Qingdao Univer.(Nat. Sci. Edit.),2013,26(3):43-48. | |
57 | YANG D J,LIU H W,LIU L,et al.Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions[J].Nanoscale,2013,5(22):11011-11018. |
58 | CHEN Y Y,YU S H,YAO Q Z,et al.One-step synthesis of Ag2O@ Mg(OH)2 nanocomposite as an efficient scavenger for iodine and uranium[J].J. Colloid Interf. Sci.,2017,510:280-291. |
59 | ZARE F,GHAEDI M,DANESHFAR A,et al.Efficient removal of radioactive uranium from solvent phase using AgOH-MWCNTs nanoparticles: kinetic and thermodynamic study[J].Chem. Eng. J.,2015,273:296-306. |
60 | ASADOLLAHI N,YAVARI R,GHANADZADEH H.Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater[J].J. Radioanal. Nucl. Chem.,2015,303(3):2445-2455. |
61 | LEE H K,CHOI J W,OH W,et al.Sorption of cesium ions from aqueous solutions by multi-walled carbon nanotubes functionalized with copper ferrocyanide[J].J. Radioanal. Nucl. Chem.,2016,309(2):477-484. |
62 | QI W,TIAN L,LIU B,et al.Adsorption of Eu(Ⅲ) on defective magnetic FeNi/RGO composites: effect of pH, ion strength, ions and humic acid[J].J. Radioanal. Nucl. Chem.,2015,303(3):2211-2220. |
63 | MU W,YU Q,RUI H,et al.Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium[J].Appl. Surf. Sci.,2017,423:1203-1211. |
64 | YU S H,LI H,YAO Q Z,et al.Microwave-assisted preparation of sepiolite-supported magnetite nanoparticles and its removal ability to low concentration Cr(Ⅵ) [J].RSC Adv.,2015,5(103):84471-84482. |
65 | RANA D,MATSUURA T,KASSIM M A,et al.Radioactive decontamination of water by membrane processes—A review[J].Desalination,2013,321(15):77-92. |
66 | RAO S V S,PAUL B,LAL K B,et al.Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration[J].J. Radioanal. Nucl. Chem.,2000,246(2):413-418. |
67 | KHEDR M G.Nanofiltration and low energy reverse osmosis in rejection of radioactive isotopes and heavy metal cations from drinking water sources[J].Desalin. Water Treat.,2009,2(1):342-350. |
68 | ZHANG C P,GU P,ZHAO J,et al.Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate[J].J. Hazard. Mater.,2009,167(1):1057-1062. |
69 | AMBASHTA R D,SILLANPÄÄ M E.Membrane purification in radioactive waste management: a short review[J].J. Environ. Radioactiv.,2012,105(25):76-84. |
70 | KALRA A,GARDE S,HUMMER G.Osmotic water transport through carbon nanotube membranes[J].Proc. Natl. Acad. Sci. U.S.,2003,100(18):10175-10180. |
71 | HINDS B J,CHOPRA N,RANTELL T,et al.Aligned multiwalled carbon nanotube membranes[J].Science,2004,303(5654):62-65. |
72 | HOLT J K,PARK H G,WANG Y,et al.Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006,312(5776):1034-1037. |
73 | COHEN-TANUGI D,GROSSMAN J C.Water desalination across nanoporous graphene[J].Nano Lett.,2012,12(7):3602-3608. |
74 | JIANG D,COOPER V R,DAI S.Porous graphene as the ultimate membrane for gas separation[J].Nano Lett.,2009,9(12):4019-4124. |
75 | LI H,SONG Z,ZHANG X,et al.Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J].Science,2013,342(6154):95-98. |
76 | HUANG T,ZHANG L,CHEN H,et al.Sol-gel fabrication of a non-laminated graphene oxide membrane for oil/water separation[J].J. Mater. Chem. A,2015,3(38):19517-19524. |
77 | NAIR R R,WU H A,JAYARAM P N,et al.Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J].Science,2012,335(6067):442-444. |
78 | RAUWEL P,RAUWEL E.Towards the extraction of radioactive cesium-137 from watervia graphene/cnt and nanostructured prussian blue hybrid nanocomposites: a review[J].Nanomaterials,2019,9(5):682-702. |
79 | WILLIAMS C D,CARBONE P.Selective removal of technetium from water using graphene oxide membranes[J].Environ. Sci. Technol.,2016,50(7):3875-3881. |
80 | WEN T,ZHAO Z,SHEN C,et al.Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive90Sr2+ and137Cs+ ions and oils[J].Sci. Rep.UK,2016,6:1-10. |
81 | ZHANG Y,ZHANG S,CHUNG T S.Nanometric graphene oxide framework membranes with enhanced heavy metal removalvia nanofiltration[J].Environ. Sci. Technol.,2015,49(16):10235-10242. |
82 | ZHANG Y,ZHANG S,GAO J,et al.Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal[J].J. Membrane Sci.,2016,515:230-237. |
83 | DING S,ZHANG L,LI Y,et al.Fabrication of a noval polyvinylidene fluoride membranevia binding SiO2 nanoparticles and a copper ferrocyanidelayer onto a membrane surface for selective removal of cesium[J].J. Hazard. Mater.,2019,368:292-299. |
84 | ZHANG L,LU Y,LIU Y,et al.High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater[J].J. Hazard. Mater.,2016,320:187-193. |
85 | QIU S,WU L,PAN X,et al.Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes[J]. J. Membrane Sci.,2009,342(1/2):165-172. |
86 | ZHAO H,WU L,ZHOU Z,et al.Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide[J].Phys. Chem. Chem. Phys.,2013,15(23):9084-9092. |
87 | ZHANG L,SHI G Z,QIU S,et al.Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes[J].Desalin. Water Treat.,2011,34(1/3):19-24. |
88 | 芦瑛,赵海洋,张林,等.含氧化石墨烯混合基质反渗透复合膜的制备及性能研究[J].中国工程科学,2014,16(7):84-88. |
LU Ying,ZHAO Haiyang,ZHANG Lin,et al.Preparation and characterization of mixed matrix RO membrane of polyamide and GO[J].Eng. Sci.,2014,16(7):84-88. | |
89 | MUSHTAQ S,YUN S J,YANG J E,et al.Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes[J].Environ Sci. Nano,2017,4(11):2157-2163. |
90 | SHIM H E,YANG J E,JEONG S W,et al.Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water[J].Nanomaterials,2018,8(9):659-669. |
91 | MUKHERJEE R,BHUNIA P,DE S.Impact of graphene oxide on removal of heavy metals using mixed matrix membrane[J].Chem. Eng. J.,2016,292:284-297. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[10] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[13] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[14] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[15] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |