化工进展 ›› 2020, Vol. 39 ›› Issue (3): 1043-1056.DOI: 10.16085/j.issn.1000-6613.2019-0840
朱子翼(),董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪(),张英杰()
收稿日期:
2019-05-22
出版日期:
2020-03-05
发布日期:
2020-04-03
通讯作者:
李雪,张英杰
作者简介:
朱子翼(1991—),男,硕士,研究方向为先进二次电池及相关能源材料。E-mail:基金资助:
Ziyi ZHU(),Peng DONG,Jufeng ZHANG,Yongtai LI,Jie XIAO,Xiaoyuan ZENG,Xue LI(),Yingjie ZHANG()
Received:
2019-05-22
Online:
2020-03-05
Published:
2020-04-03
Contact:
Xue LI,Yingjie ZHANG
摘要:
近年来,原料广泛、成本低廉的钠离子电池被公认为新一代综合效能优异的储能电池系统,但较低的能量密度和有限的循环寿命仍然是阻碍其商业化应用的主要挑战。借鉴锂离子电池的开发经验,合理的改性工艺已被证实可以明显提高钠离子电池的电化学性能,尤其是在已建立的正极体系中。本文分析了过渡金属氧化物、聚阴离子化合物、普鲁士蓝类化合物以及有机化合物等钠离子电池正极材料的结构、性能特点,并系统综述了粒径纳米化、表面包覆、元素掺杂等多类改性方法的最新研究成果。未来的研发和设计中,改进合成工艺控制粒径、拓宽包覆物质种类、梯度掺杂协同元素以及寻找不同结构特征的钠离子电池正极材料是研究重点。
中图分类号:
朱子翼,董鹏,张举峰,黎永泰,肖杰,曾晓苑,李雪,张英杰. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056.
Ziyi ZHU,Peng DONG,Jufeng ZHANG,Yongtai LI,Jie XIAO,Xiaoyuan ZENG,Xue LI,Yingjie ZHANG. Research progress on modification of cathode materials for new generation energy storage sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1043-1056.
1 | DUNN B,KAMATH H,TARASCON J M.Electrical energy storage for the grid: a battery of choices[J].Science,2011,334(6058):928-935. |
2 | PAN H,HU Y S,CHEN L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy & Environmental Science,2013,6(8):2338-2360. |
3 | LLAVE E D L,BORGEL V,PARK K J,et al.Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J].ACS Applied Materials & Interfaces,2016,8(3):1867-1875. |
4 | VAALMA C,BUCHHOLZ D,WEIL M,et al.A cost and resource analysis of sodium-ion batteries[J].Nature Reviews Materials,2018,3:18013. |
5 | YABUUCHI N,KUBOTA K,DAHBI M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682. |
6 | LI L,ZHENG Y,ZHANG S,et al.Recent progress on sodium ion batteries: potential high-performance anodes[J].Energy & Environmental Science,2018,11(9):2310-2340. |
7 | CHEN M,LIU Q,WANG S W,et al.High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies[J].Advanced Energy Materials,2019,9(14):1803609. |
8 | DENG J,LUO W B,CHOU S L,et al.Sodium-ion batteries: from academic research to practical commercialization[J].Advanced Energy Materials,2018,8(4):1701428. |
9 | BOMMIER C,JI X.Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes[J].Small,2018,14(16):1703576. |
10 | CHEN L,FIORE M,WANG J E,et al.Readiness level of sodium-ion battery technology: a materials review[J].Advanced Sustainable Systems,2018,2(3):1700153. |
11 | SKUNDIN A M,KULOVA T L,YAROSLAVSEV A B.Sodium-ion batteries (A review)[J].Russian Journal of Electrochemistry,2018,54(2):113-152. |
12 | LIANG Y,LAI W H,MIAO Z,et al.Nanocomposite materials for the sodium-ion battery: a review[J].Small,2018,14(5):1702514. |
13 | KUBOTA K,DAHBI M,HOSAKA T,et al.Towards K-ion and Na-ion batteries as ‘beyond Li-ion’[J].The Chemical Record,2018,18(4):459-479. |
14 | 王勇,刘雯,郭瑞,等.钠离子电池正极材料研究进展[J].化工进展,2018,37(8):3056-3066. |
WANG Y,LIU W,GUO R,et al.Recent development of cathode materials for sodium-ion batteries[J].Chemical Industry and Engineering Progress,2018,37(8):3056-3066. | |
15 | 方永进,陈重学,艾新平,等.钠离子电池正极材料研究进展[J].物理化学学报,2017,33(1):211-241. |
FANG Y J,CHEN Z X,AI X P,et al.Recent developments in cathode materials for Na ion batteries[J].Acta Physico-Chimica Sinica,2017,33(1):211-241. | |
16 | LI W,WANG Y,HU G,et al.Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life[J].Journal of Alloys and Compounds,2019,779:147-155. |
17 | WU X,XU G L,ZHONG G,et al.Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries[J].ACS Applied Materials & Interfaces,2016,8(34):22227-22237. |
18 | JIANG K,XU S,GUO S,et al.A phase-transition-free cathode for sodium-ion batteries with ultralong cycle life[J].Nano Energy,2018,52:88-94. |
19 | ZHOU P,LIU X,WENG J,et al.Synthesis, structure, and electrochemical properties of O′3-type monoclinic NaNi0.8Co0.15Al0.05O2 cathode materials for sodium-ion batteries[J].Journal of Materials Chemistry A,2019,7(2):657-663. |
20 | XIAO Y,WANG P F,YIN Y X,et al.A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode[J].Advanced Energy Materials,2018,8(22):1800492. |
21 | FU B,ZHOU X,WANG Y.High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries[J].Journal of Power Sources,2016,310:102-108. |
22 | SHEN K Y,LENGYEL M,WANG L,et al.Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes[J].MRS Communications,2017,7(1):74-77. |
23 | CAO Y,XIAO L,WANG W,et al.Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J].Advanced Materials,2011,23(28):3155-3160. |
24 | XU M,NIU Y,CHEN C,et al.Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries[J].RSC Advances,2014,4(72):38140-38143. |
25 | LIU Q,HU Z,CHEN M,et al.Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(4):3644-3652. |
26 | CAI Y,LIU F,LUO Z,et al.Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode[J].Energy Storage Materials,2018,13:168-174. |
27 | JIANG X,LIU S,XU H,et al.Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries[J].Chemical Communications,2015,51(40):8480-8483. |
28 | JO J H,CHOI J U,KONAROV A,et al.Sodium-ion batteries: building effective layered cathode materials with long-term cycling by modifying the surfacevia sodium phosphate[J].Advanced Functional Materials,2018,28(14):1705968. |
29 | YOU Y,DOLOCAN A,LI W,et al.Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries[J].Nano Letters,2018,19(1):182-188. |
30 | KHAN M A,HAN D,LEE G,et al.P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries[J].Journal of Alloys and Compounds,2019,771:987-993. |
31 | RAHMAN M M,XU Y,CHENG H,et al.Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities[J].Energy & Environmental Science,2018,11(9):2496-2508. |
32 | GAO G,TIE D,MA H,et al.Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2 (0.44≤x≤0.7) toward fast and high capacity sodium storage[J].Journal of Materials Chemistry A,2018,6(15):6675-6684. |
33 | LI S,DONG Y,XU L,et al.Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J].Advanced Materials,2014,26(21):3545-3553. |
34 | DENG L,SUN G,GOH K,et al.Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries[J].Electrochimica Acta,2019,298:459-467. |
35 | ZHAN R,ZHANG Y,CHEN H,et al.High-rate and long-life sodium-ion batteries based on sponge-like 3D porous Na-rich ferric pyrophosphate cathode material[J].ACS Applied Materials & Interfaces,2019,11(5):5107-5113. |
36 | CHEN M,CORTIE D,HU Z,et al.A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries[J].Advanced Energy Materials,2018,8(27):1800944. |
37 | YI H,LING M,XU W,et al.VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties[J].Nano Energy,2018,47:340-352. |
38 | LIU Y,ZHANG N,WANG F,et al.Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries[J].Advanced Functional Materials,2018,28(30):1801917. |
39 | JIANG Y,ZHOU X,LI D,et al.Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J].Advanced Energy Materials,2018,8(16):1800068. |
40 | SONG H J,KIM J C,DAR M A,et al.Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2–2xCo1+xP2O7 cathode for Na-ion batteries[J].Journal of Power Sources,2018,377:121-127. |
41 | 谷振一,郭晋芝,杨洋,等.钠离子电池正极材料Na3V2(PO4)2O2F的控制合成与电化学性能优化[J].无机化学学报,2018,34(9):60-67. |
GU Z Y,GUO J Z,YANG Y,et al.Controlled preparation and performance optimization of Na3V2(PO4)2O2F as cathode material for sodium ion batteries[J].Chinese Journal of Inorganic Chemistry,2018,34(9):60-67. | |
42 | LI C,SHEN M,HU B,et al.High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry[J].Journal of Materials Chemistry A,2018,6(18):8340-8348. |
43 | VU A,QIAN Y,STEIN A.Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special[J].Advanced Energy Materials,2012,2(9):1056-1085. |
44 | ZHENG L L,XUE Y,HAO S E,et al.Porous Na3V2(PO4)3 prepared by freeze-drying method as high performance cathode for sodium-ion batteries[J].Ceramics International,2018,44(8):9880-9886. |
45 | CAO X,PAN A,YIN B,et al.Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications[J].Nano Energy,2019,60:312-323. |
46 | HUA S,CAI S,LING R,et al.Synthesis of porous sponge-like Na2FePO4F/C as high-rate and long cycle-life cathode material for sodium ion batteries[J].Inorganic Chemistry Communications,2018,95:90-94. |
47 | 于胜兰.钠离子电池正极材料普鲁士蓝类钠盐的制备及电化学性能研究[D].杭州:浙江大学,2015. |
YU S L.Preparation and electrochemical performance of Prussian Blue based cathodes for sodium ion batteries[D].Hangzhou:Zhejiang University,2015. | |
48 | HE G,NAZAR L F.Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries[J].ACS Energy Letters,2017,2(5):1122-1127. |
49 | TANG X,LIU H,SU D,et al.Hierarchical sodium-rich Prussian Blue hollow nanospheres as high-performance cathode for sodium-ion batteries[J].Nano Research,2018,11(8):3979-3990. |
50 | MA X H,JIA W,WANG J,et al.Synthesis of copper hexacyanoferrate nanoflake as a cathode for sodium-ion batteries[J].Ceramics International,2019,45(1):740-746. |
51 | ZHANG Q,FU L,LUAN J,et al.Surface engineering induced core-shell Prussian Blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J].Journal of Power Sources,2018,395:305-313. |
52 | LUO J,SUN S,PENG J,et al.Graphene-roll-wrapped Prussian Blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(30):25317-25322. |
53 | ASAKURA D,LI C H,MIZUNO Y,et al.Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability[J].Journal of the American Chemical Society,2013,135(7):2793-2799. |
54 | WAN M,TANG Y,WANG L,et al.Core-shell hexacyanoferrate for superior Na-ion batteries[J].Journal of Power Sources,2016,329:290-296. |
55 | YU S,LI Y,LU Y,et al.A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries[J].Journal of Power Sources,2015,275:45-49. |
56 | YANG D,XU J,LIAO X Z,et al.Structure optimization of Prussian Blue analogue cathode materials for advanced sodium ion batteries[J].Chemical Communications,2014,50(87):13377-13380. |
57 | XIE M,XU M,HUANG Y,et al.Na2NixCo1–xFe(CN)6: a class of prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J].Electrochemistry Communications,2015,59:91-94. |
58 | SONG J,WANG L,LU Y,et al.Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J].Journal of the American Chemical Society,2015,137(7):2658-2664. |
59 | LEE H W,WANG R Y,PASTA M,et al.Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J].Nature Communications,2014,5:5280. |
60 | YOU Y,WU X L,YIN Y X,et al.High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J].Energy & Environmental Science,2014,7(5):1643-1647. |
61 | WU X,WU C,WEI C,et al.Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J].ACS Applied Materials & Interfaces,2016,8(8):5393-5399. |
62 | 黄苇苇,闫冰,孙会民,等.有机正极材料在钠二次电池中的应用[J].燕山大学学报,2018,42(3):189-189. |
HUANG W W,YAN B,SUN H M.et al. Organic cathode materials for sodium-ion batteries[J].Journal of Yanshan University,2018,42(3):189-189. | |
63 | ZHANG E,WANG B,YU X,et al.β-FeOOH on carbon nanotubes as a cathode material for Na-ion batteries[J].Energy Storage Materials,2017,8:147-152. |
64 | YUAN C,WU Q,LI Q,et al.Nanoengineered ultralight organic cathode based on aromatic carbonyl compound/graphene aerogel for green lithium and sodium ion batteries[J].ACS Sustainable Chemistry & Engineering,2018,6(7):8392-8399. |
65 | ZHU L,NIU Y,CAO Y,et al.n-Type redox behaviors of polybithiophene and its implications for anodic Li and Na storage materials[J].Electrochimica Acta,2012,78:27-31. |
66 | LUO C,ZHU Y,XU Y,et al.Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes[J].Journal of Power Sources,2014,250:372-378. |
67 | WANG H,HU P,YANG J,et al.Renewable-juglone-based high-performance sodium-ion batteries[J].Advanced Materials,2015,27(14):2348-2354. |
68 | ZHENG S,HU J,HUANG W.An inorganic-organic nanocomposite calix [4] quinone (C4Q)/CMK-3 as a cathode material for high-capacity sodium batteries[J].Inorganic Chemistry Frontiers,2017,4(11):1806-1812. |
69 | ZHOU M,QIAN J,AI X,et al.Redox-active Fe(CN)64--doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries[J].Advanced Materials,2011,23(42):4913-4917. |
70 | ZHOU M,ZHU L,CAO Y,et al.Fe(CN)64--doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries[J].RSC Advances,2012,2(13):5495-5498. |
71 | ZHOU M,XIONG Y,CAO Y,et al.Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries[J].Journal of Polymer Science Part B: Polymer Physics,2013,51(2):114-118. |
72 | ZHU L,SHEN Y,SUN M,et al.Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries[J].Chemical Communications,2013,49(97):11370-11372. |
73 | WANG H G,YUAN S,MA D,et al.Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries[J].Advanced Energy Materials,2014,4(7):1301651. |
74 | NOKAMI T,MATSUO T,INATOMI Y,et al.Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity[J].Journal of the American Chemical Society,2012,134(48):19694-19700. |
75 | XU F,XIA J,SHI W,et al.Sulfonyl-based polyimide cathode for lithium and sodium secondary batteries: enhancing the cycling performance by the electrolyte[J].Materials Chemistry and Physics,2016,169:192-197. |
76 | CHEN L,LI W,WANG Y,et al.Polyimide as anode electrode material for rechargeable sodium batteries[J].RSC Advances,2014,4(48):25369-25373. |
77 | ZHAO R,ZHU L,CAO Y,et al.An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries[J].Electrochemistry Communications,2012,21:36-38. |
78 | WANG S,WANG L,ZHU Z,et al.All organic sodium-ion batteries with Na4C8H2O6[J].Angewandte Chemie International Edition,2014,53(23):5892-5896. |
79 | CHIHARA K,CHUJO N,KITAJOU A,et al.Cathode properties of Na2C6O6 for sodium-ion batteries[J].Electrochimica Acta,2013,110:240-246. |
80 | LEE M,HONG J,LOPEZ J,et al.High-performance sodium-organic battery by realizing four-sodium storage in disodium rhodizonate[J].Nature Energy,2017,2(11):861. |
81 | MIHALI V A,RENAULT S,NYHOLM L,et al.Benzenediacrylates as organic battery electrode materials: Naversus Li[J].RSC Advances,2014,4(72):38004-38011. |
82 | GUO C,ZHANG K,ZHAO Q,et al.High-performance sodium batteries with the 9, 10-anthraquinone/CMK-3 cathode and an ether-based electrolyte[J].Chemical Communications,2015,51(50):10244-10247. |
83 | LI A,FENG Z,SUN Y,et al.Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries[J].Journal of Power Sources,2017,343:424-430. |
[1] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[4] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[5] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[6] | 杨涵, 张一波, 李琦, 张俊, 陶莹, 杨全红. 面向实用化的钠离子电池碳负极:进展及挑战[J]. 化工进展, 2023, 42(8): 4029-4042. |
[7] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[8] | 王庆宏, 姜晨旭, 王鑫, 余美琪, 朱帅, 李一鸣, 陈春茂. 天然矿物催化氧化水中难降解有机污染物研究进展[J]. 化工进展, 2023, 42(1): 417-434. |
[9] | 齐亚兵, 贾宏磊. 熔融结晶技术分离纯化有机化合物的研究进展[J]. 化工进展, 2023, 42(1): 373-385. |
[10] | 包淼清. 苯乙烯产品的浙江制造质量标准研究[J]. 化工进展, 2022, 41(S1): 648-655. |
[11] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[12] | 刘汉飞, 朱昊, 李双涛, 季雨凡, 黄益平, 黄晶晶, 倪嵩波, 倪泽雨. 凹凸棒负载型催化剂的制备及处理低浓度有机物效能[J]. 化工进展, 2022, 41(9): 5103-5108. |
[13] | 许亚兵, 王宝山, 汪光宗, 张洋. 生物电化学系统对制药废水中难生化有机物的降解[J]. 化工进展, 2022, 41(9): 5055-5064. |
[14] | 杨福, 刘梦婷, 马淑兰, 魏祎暄, 欧锐, 王旭裕, 李露露, 张武翔, 潘建明. 挥发性有机化合物催化消除前沿技术及研究进展[J]. 化工进展, 2022, 41(9): 4801-4812. |
[15] | 李想, 葛武杰, 马先果, 彭工厂. 高镍正极材料微裂纹诱导容量衰减的应对策略研究进展[J]. 化工进展, 2022, 41(8): 4277-4287. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |